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Abstract The influence of wave–bedform feedbacks on
both the initial formation of shoreface-connected sand
ridges (sfcr) and on grain size sorting over these ridges
on micro-tidal inner shelves is studied. Also, the effect
of sediment sorting on the growth and the migration
of sfcr is investigated. This is done by applying a linear
stability analysis to an idealized process-based mor-
phodynamic model, which simulates the initial growth
of sfcr due to the positive coupling between waves,
currents, and an erodible bed. The sediment consists
of sand grains with two different sizes. New elements
with respect to earlier studies on grain sorting over
sfcr are that wave-topography interactions are explicitly
accounted for, entrainment of sediment depends on
bottom roughness, and transport of suspended sedi-
ment involves settling lag effects. The results of the
model indicate that sediment sorting causes a reduction
of the growth rate and migration speed of sfcr, whereas
the wavelength is only slightly affected. In the case
where the entrainment of suspended sediment depends
on bottom roughness, the coarsest sediment is found
in the troughs; otherwise, the finest sediment occurs
in the troughs. Compared to previous work, modeled
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maximum variations in the mean grain size over the
topography are in better agreement with field observa-
tions. Settling lag effects are important for the damping
of high-wavenumber mode instabilities such that a pre-
ferred wavelength of the bedforms is obtained.
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1 Introduction

Shoreface-connected sand ridges (hereafter abbrevi-
ated as sfcr) are rhythmic bottom patterns that are
found on sandy, storm-dominated inner shelves in wa-
ter depths of 5–30 m. During storms, the water mo-
tion is characterized by high waves (wave heights of
2–4 m) and a mean storm-driven alongshore flow of
up to 0.5 m s−1. Field observations (Swift et al. 1978;
Antia 1996; Van de Meene and Van Rijn 2000; Schwab
et al. 2000, and references therein) reveal that crests
of sfcr have a length between 10 and 25 km, their
heights are 1–6 m, and distances between successive
crests are 2–6 km. Sfcr are attached to the shoreface
and their seaward ends are located further upstream
(with respect to the direction of the storm-driven flow).
Angles between the crests and the coastline are in the
range 20–50◦. Sfcr evolve on a time scale of centuries,
and they migrate in the direction of the storm-driven
flow with 1–50 m year−1, depending on the measuring
period. Furthermore, field data indicate a persistent
pattern of grain sorting over sfcr. In many cases, the
sediment at the seabed is coarsest on the landward
flanks and finest on the seaward flanks. This phase shift
between the mean grain size and topography variations
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is documented for sfcr on the Mid Atlantic shelf (e.g.,
Swift et al. 1972; Schwab et al. 2000), the inner shelf
of Argentina (Parker et al. 1982), and the German
Bight (Antia 1996).

Both observations (Swift and Field 1981) and model
studies (Trowbridge 1995; Calvete et al. 2001) have
indicated that sfcr can grow due to positive feedbacks
between the water motion and the erodible sandy bed.
During storms, bottom stresses exerted by the waves
are strong enough to entrain the sediment, which is
subsequently transported by the storm-driven flow. The
ridges induce spatial variations in the flow and in the
sediment transport. This results in net deposition of
sediment over the crests, whilst net erosion occurs in
the troughs. As a result, the ridges grow. Their mi-
gration is due to the fact that the maximum deposi-
tion occurs slightly downstream of their crests. The
models investigate the formation of sfcr by calculat-
ing the growth of arbitrary bottom perturbations with
small amplitudes. Calvete et al. (2001) demonstrated
that their fastest growing bottom perturbations have
characteristics that agree quite well with those of ob-
served sfcr.

One limitation of these models is that they consider
sediment with a uniform grain size, which is not in
accordance with field data. Walgreen et al. (2003) an-
alyzed a model that considers the effect of sediment
sorting on the formation of sfcr. Results of this model
indicate that the phase shift between bed topography
and mean grain size is due to the selective transport
via suspended load of grains with different sizes. Fur-
thermore, sediment sorting has a net stabilizing effect
on the growth of sfcr, whereas their migration speed
becomes larger and their wavelength is only slightly
affected. Process-based models have also been devel-
oped to investigate grain sorting over other coastal
bedforms, such as ripples (Foti and Blondeaux 1995),
sorted bedforms on the inner shelf (Murray and Thieler
2004; Coco et al. 2007a, b; Huntley et al. 2008), tidal
sand banks (Walgreen et al. 2004; Roos et al. 2007),
and tidal sand waves (Roos et al. 2008; Van Oyen and
Blondeaux 2009); see also the review by Holland and
Elmore (2008).

The models on sfcr discussed above employ a
strongly simplified description of waves in calculating
stirring of sediment. In two recent studies by Lane
and Restrepo (2007) and Vis-Star et al. (2007), a more
sophisticated description of waves is applied, based on
linear wave theory, which enables to include explicit
feedbacks between waves and sfcr. The latter results
in additional transport (by the storm-driven flow) of
sediment being entrained by the wave orbital motion,

which is generated by the bedforms. In the latter study,
it is demonstrated that the spatial variations in this
sediment transport are such that both the growth and
downstream migration of sfcr are enhanced. Lane and
Restrepo (2007), on the other hand, report that they do
not obtain growth of bedforms if they include wave–
bedform interactions. This seems to be a consequence
of their assumption that sediment transport is propor-
tional to the mass transport velocity (which accounts
for currents and wave-induced Stokes drift), rather than
being proportional to the near-bed current.

In this paper, the model of Vis-Star et al. (2007) is
extended such that it enables the exploration of wave–
bedform feedbacks in a model for bimodal sediment
mixtures. This is done by adopting and extending the
sediment sorting module for a bimodal sediment mix-
ture of Walgreen et al. (2003). The first aim of this work
is to investigate whether wave–bedform interactions
play an important role in the initial growth of sfcr, as
well as in the initial onset of grain sorting over sfcr.
Secondly, the influence of sediment sorting on the char-
acteristics of sfcr is explored. Several new aspects are
included in the sediment module. First, the longshore-
averaged value of the mean grain size is allowed to
vary in the cross-shore direction. Second, motivated by
the work of Murray and Thieler (2004), Coco et al.
(2007a, b), and Huntley et al. (2008), settling lag and
roughness-induced turbulence are accounted for when
computing suspended load sediment transport.

In Section 2, a detailed discussion of the process-
based model is given, followed by a description of
the solution method in Section 3. Section 4 presents
the results, which are discussed in Section 5. Finally, the
conclusions are drawn in Section 6.

2 Model formulation

2.1 Shelf geometry

The geometry is shown in Fig. 1 and represents a semi-
infinite domain, bounded on the landward side by the
transition from shoreface to inner shelf. In the seaward
direction, the water depth increases up to the transition
to the outer shelf, where the latter is characterized by a
flat bottom. In the absence of bedforms, the geometry is
assumed to be longshore uniform. The x-, y-, and z-axes
of the orthogonal coordinate system point in the cross-
shore, alongshore, and vertical directions, respectively.
The water depth on the landward side of the inner shelf
(x = 0) is H0, Ls is the inner shelf width, and the depth
of the outer shelf is indicated by Hs.
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Fig. 1 Side view of a typical longshore- and time-averaged bot-
tom topography of the continental shelf, representing the inner
and outer shelves, in the shore-normal direction. Symbols are
explained in the text

2.2 Hydrodynamics

2.2.1 Waves

Linear wave theory is used to describe the properties
of offshore waves approaching the shoreface. For the
waves and water depths considered here (the inner
shelf region), this approximation is reasonable. The
equations used are similar to those in the study by Vis-
Star et al. (2007). Rayleigh distributed random waves
are considered, characterized by a narrow band of
frequencies and orientations. The narrow spectrum is
centered around a peak frequency, wavenumber, and
wave orientation.

The rigid-lid approximation is used, i.e., the effects of
the free surface on the local water depth are neglected.
Thus, the local water depth D̃ = zs − zb is approxi-
mated by D = −zb. Here, zs and zb are the free surface
elevation and the bottom depth both measured with
respect to the undisturbed water level z = 0. Refraction
of waves by currents is not taken into account.

Stationary wave conditions are assumed, which is
justified by the fact that the time scale of the waves
(order of 10 s) is very small compared to the mor-
phodynamic time scale (order of 100 years). Under
this assumption, the law of conservation of wave crests
implies that the radian wave frequency ω is constant.
Subsequently, the dispersion relation

ω 2 = gκ tanh(κ D) (1)

determines the wavenumber κ of the waves, with g
as the acceleration due to gravity. The angle of wave
incidence with respect to the shore-normal, θ (defined
positive in clockwise direction), is governed by the
wavenumber identity relation

∂

∂y
(κ cos θ) + ∂

∂x
(κ sin θ) = 0. (2)

The root-mean square wave height Hrms follows from

E = ρgH 2
rms/8 , (3)

with ρ the water density and E the energy density. The
latter is governed by the energy balance

∇ · (cgE ) = F ∗ − D . (4)

The group velocity vector of the waves cg has magni-
tude cg = ∂ω/∂κ and components cgx = −cg cos θ and
cgy = cg sin θ . Furthermore, F ∗ and D are a forcing and
a dissipation term, which are modeled as

D = 2c f∗κ uw E

sinh (2κ D)
, F ∗ = D |x=Ls , (5)

where c f∗ is a constant friction coefficient and

uw = ωHrms

2 sinh(κ D)
(6)

is the root-mean-square amplitude of the near-bed
wave orbital velocity (hereafter called wave orbital
velocity). The choice of the forcing function is such
that, on the outer shelf, the waves neither gain nor
lose energy. As boundary conditions, offshore wave
properties (height, period, and angle of incidence) are
imposed.

2.2.2 Currents

The water motion is described by the quasi-steady
depth- and wave-averaged (2DH) shallow water
equations

(v · ∇)v + f ez × v = −g∇zs + τ s − τ b

ρD
, (7)

∇ · (Dv) = 0. (8)

Here, v = (u, v) is the depth- and wave-averaged
velocity, f is the Coriolis parameter, ez is a unit
vector in the vertical direction, and g is the gravita-
tional acceleration. Furthermore, τ s represents the
wind stress, τ b represents the bed shear-stress, and ∇
is the two-dimensional (horizontal) nabla vector. In
the momentum equations (Eq. 7), forcing terms due to
wave-induced radiation stresses, horizontal momentum
diffusion, density gradients, and tides are not consid-
ered. It is assumed that the mean storm-driven flow is
in the alongshore direction (cross-shore component is
neglected), due to a given wind stress τsy.

This model only represents stormy weather condi-
tions, during which the wave orbital velocity is much
larger than the magnitude of the storm-driven current.
It is assumed that, during fair weather conditions, the
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water motion is not strong enough to erode the sedi-
ment from the bottom. In the case of storms, the bed
shear-stress is linearly related to the mean flow,

τ b = ρruwv, (9)

with r as a dimensionless friction coefficient computed
for random waves and uw given in Eq. 6. Boundary
conditions are that the cross-shore flow component u
vanishes at x = 0 and far offshore and periodic condi-
tions in the longshore direction are assumed.

2.3 Sediment characteristics

The sediment considered in the present study is a mix-
ture of grains of two different sizes, with d1 and d2

as the grain diameters of the fine and coarse material,
respectively. As the distribution of grain sizes in a mix-
ture appears to be close to log-normal, it is convenient
to use a logarithmic scale for the grain diameter, the
phi-scale:

di = 2−φi or φi = − log2 di (i = 1, 2) , (10)

where di is measured in units of millimeters (Dyer
1986). Note that the larger the phi-value, the smaller
the grain size. The weight percentages of the fine and
coarse grain size class are given by F1 and F2, respec-
tively, and

2∑

i=1

Fi = 1. (11)

The probabilities are used to calculate two statistical
properties of the sediment mixture, the mean grain
diameter dm (or the grain size φm), and the standard
deviation υs. Their definitions read

dm =2−φm , φm =
2∑

i=1

φiFi, υ2
s =

2∑

i=1

(φi−φm)2 Fi. (12)

The standard deviation of the distribution gives a mea-
sure of the sorting of the sediment mixture. A poorly
sorted mixture of sediment has large values of υs,
whereas a well-sorted, almost uniform sample corre-
sponds to small υs values.

2.4 Sediment dynamics

The bottom evolution is determined by divergence of
the sediment transport. The latter depends on the sedi-
ment composition. In the case of a sediment mixture,
the grain size distribution itself will also change. A
simple model, originally proposed by Hirano (1971),
is used to describe the bottom sediment as consisting

of a well-mixed active layer (probabilities Fi are inde-
pendent of depth), and a substrate underneath where
the probabilities Fsi do not vary in time. A sketch is
given in Fig. 2, where zb = −H + h′ denotes the bottom
location, H denotes the undisturbed water depth, and
h′ is the bed elevation with respect to this reference
level. The thickness of the active layer La is in the order
of (2 − 3)d90, where d90 is the sediment size for which
90% of the grains are finer.

Mass conservation for each size class is given by

(1− p)

(
Fη,i

∂zb

∂t
+La

∂Fi

∂t
+(

Fi−Fη,i
) ∂La

∂t

)
=−∇ · qi

(13)

Sedimentation:
∂zη

∂t
= ∂

∂t

(
zb − La

)
> 0 : Fη,i = Fi

Erosion:
∂zη

∂t
= ∂

∂t

(
zb − La

)
< 0 : Fη,i = Fsi

Here, p is the bed porosity, t is time, and qi is the
wave-averaged total volumetric transport of sediment
per unit width of grains with size di.

Sediment in each grain size class is transported both
as bedload (qbi) and suspended load (qsi); thus,

qi = qbi + qsi. (14)

Expressions for qbi and qsi are derived from expressions
for a single grain size. Corrections for the availability of
sediment in a size class and for dynamic hiding effects
(fine grains hide between the coarser grains and, hence,
experience a smaller fluid drag) are needed to calculate
the sediment transport of grains of a specific size. Static
hiding effects due to the presence of a critical shear-
stress for erosion are neglected.

mean free surface z = 0

water

substrate
active layer

h’

La

z = zb

z = -H

z = zb- La

Fig. 2 Definition of the sediment layer as used in the model.
The thickness of the active layer is denoted by La and h′ is
the elevation of the bottom with respect to the reference level
z = −H
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The bedload sediment transport is calculated as

qbi = FiGbiqb, qb = 3

2
νbu2

w (v − λbuw∇zb) ,

Gbi =
(

di

dm

)cb

. (15)

Here, the strength of hiding is indicated by exponent
cb in the transport capacity function Gbi for bedload.
Note that, in the absence of hiding, cb = 0, whereas
for typical sand mixtures, cb ∼ 0.75 (Egiazaroff 1965).
Thus, the bedload transport for grains with a diameter
di > dm (di < dm) is enhanced (reduced) compared to
the bedload transport for grains with a diameter dm

due to dynamic hiding. The expression for qb originates
from Bailard (1981), where the first contribution rep-
resents the net sediment transport due to stirring of
sediment by waves and the subsequent transport by the
net current. Coefficient νb depends on sediment prop-
erties (but not on di, which is already included in Gbi).
The second contribution to qb accounts for the effect of
bottom slopes, with λb the bed slope parameter, which
is assumed to be constant.

Suspended load transport plays a significant role
during storms (Green et al. 1995) and is formulated as

qsi = Ci
(
v − λsu2

w∇zb
)
. (16)

Here, all grain size dependence is included in Ci,
which is the depth-integrated volumetric concentration
of available grains in class i. Furthermore, λs is the
bed slope coefficient for suspended load transport. The
contribution in Eq. 16 related to bed slopes is subject
to discussion, but in this study, its effect is not im-
portant (see Section 4). The depth-integrated volumet-
ric concentration of suspended grains of class i, Ci, is
governed by

∇ · (vCi) = wsi
(
Fi Ei − cbi

)
. (17)

The term on the left-hand side accounts for settling
lag effects, i.e., it takes time for sediment to reach the
bottom when the decreasing current cannot maintain
it in suspension. Thus, settling occurs at some distance
from the location where sediment has been entrained.
The first term on the right-hand side accounts for the
entrainment of sediment into suspension, the second
term for deposition of sediment. Furthermore, wsi is the
settling velocity of grains of diameter di, Ei is the di-
mensionless entrainment of these grains, and cbi is their
actual volume concentration near the bed. The entrain-
ment of a size fraction is multiplied by the probability
Fi that sediment of this grain size is actually present. In
this paper, the entrainment formulation of Garcia and
Parker (1991) is used because it is based on laboratory

experiments with sediment mixtures, thereby account-
ing for possible hiding effects. This formulation reads

Ei = Aλ5
E Z 5

i u5
w, Zi =

√
cfi

wsi
R0.6

pi

(
di

dm

)eh

,

λE = 1 − 0.288 υs , (18)

with A = 1.3 × 10−7 as a constant and λE as a
sorting-dependent straining parameter. Furthermore,
cfi is a friction coefficient of grains in size class i and
Rpi = (g′d3

i )
1/2/ν is the particle Reynolds number of

these grains, with g′ the reduced acceleration due to
gravity and ν ∼ 1.36 × 10−6 m2 s−1 the kinematic vis-
cosity coefficient of water. Hiding effects are described
by the last factor in the expression for Zi and involves
the exponent eh.

The actual near-bed volume concentration cbi in
Eq. 17 can be expressed in terms of the depth-inte-
grated volumetric concentration Ci by using that the
dominant balance in the full 3D concentration equation
is between the settling flux and the vertical turbulent
diffusive flux and employing a standard formulation for
the vertical eddy diffusivity. The result is

cbi = Ci

δi D
, (19)

with δi the ratio of the thickness of the suspended load
layer for grains of diameter di and depth D. Parameter
δi is inversely proportional to the settling velocity, and
it has typical values of order 0.2.

In the present model, it is assumed that

cfi

c f∗
=

(
di

d∗

)e f

,
ws∗
wsi

=
(

di

d∗

)−ew

, (20)

with d∗ as a constant reference grain size and c f∗, ws∗
as the friction coefficient and settling velocity for that
specific grain size. Likewise, using the definition for Rpi

and δi, it follows

Rpi

Rp∗
=

(
di

d∗

)3/2

,
δi

δ∗
= ws∗

wsi
. (21)

The entrainment of grains with size di, as described
by Eq. 18, involves four different effects. The factor
λ5

E(di/dm)5eh describes hiding effects. It accounts for the
fact that (1) the entrainment of fine grains is tempered
with respect to that of coarse grains and (2) a reduced
entrainment of grains from both size classes for a poorly
sorted sediment mixture compared to grains in uniform
sediment due to a more efficient packing of the bottom
sediment. Typically, eh = 0.2 (Garcia and Parker 1991).
The entrainment also depends on the particle Reynolds
number and the settling velocity. As the settling ve-
locity decreases with increasing grain size, both factors



736 Ocean Dynamics (2009) 59:731–749

favor the entrainment of fine sediment over coarser
sediment (which is opposite to the hiding effect). The
formulation of Hallermeier (see Soulsby 1997) for fine
to coarse sand yields ew = 1.1. The final effect, which
has not been considered in the context of sfcr, rep-
resents the dependence of the friction coefficient on
the grain size. Following work on sorted bedforms
by Murray and Thieler (2004), Coco et al. (2007a),
and Huntley et al. (2008), it accounts for more vigorous
turbulent motions and related increase of entrainment
of sediment, above a rough (coarse) surface compared
to a fine sediment surface. According to Murray and
Thieler (2004), e f should be in the order of 1.

The boundary conditions for Eqs. 13 and 17 are that
the bed level is fixed at x = 0 and far offshore and that
Ci is bounded far offshore.

3 Solution method

The initial growth of morphodynamic features is in-
vestigated by applying a linear stability analysis. It is
a similar analysis to that employed in the early study
by Trowbridge (1995), and it is based on the hypothe-
sis that sfcr form as free morphodynamic instabilities
of a basic state. As the initial growth is considered,
equations are linearized. The basic state is discussed in
Section 3.1 and the linearization procedure is outlined
in Section 3.2.

3.1 Basic state

For a longshore uniform bottom profile zb = −H(x)

without bedforms, the model allows for a basic state,
which is steady and alongshore uniform (variables only
depend on x). The solution for the waves and currents
in this state is identical to that discussed in Vis-Star
et al. (2007); hence, only the essential aspects are dis-
cussed here. The dispersion relation of the waves, Eq. 1,
becomes

ω2 = gK tanh (KH) . (22)

As ω is constant, the latter relates the basic state
wavenumber K to water depth H. Expressions for
the angle of wave incidence � and wave energy E
in the basic state result from substitution of basis
state variables in Eqs. 2–4. Likewise, the wave orbital
velocity in the basic state follows from Eq. 6 and
is given by

Uw = ωHrms

2 sinh(KH)
, H2

rms = 8E
ρg

, (23)

with Hrms as the root-mean-square wave height in the
basic state.

The cross-shore and alongshore momentum balance
in the basic state describe a longshore current V(x),
which is driven by an alongshore wind stress τsy. Due
to Coriolis effects, it induces a mean sea level Z (x).
The magnitude of V is inversely related to the local
wave orbital velocity due to frictional effects. There is
no cross-shore velocity in the basic state, i.e., U = 0.

Next, we specify the basic state probabilities Fi and
Fsi of grains of class i in the active layer and in the
substrate, respectively. Here, it is assumed that

Fi = Fs,i (i = 1, 2) , (24)

and Fi can have any cross-shore distribution. Note that,
for the present two-size sediment mixture, F2 = 1 − F1.
The corresponding expressions for the mean grain di-
ameter dm0, mean grain size �m, and the standard
deviation ϒs are derived from Eq. 12 and read

dm0 = 2−�m , �m = φ1 F1 + φ2 F2,

ϒ2
s = F1 F2(φ1 − φ2)

2. (25)

Substitution of the basic state variables in the concen-
tration equations (Eq. 17) results in expressions for
the depth-integrated volumetric suspended sediment
concentrations Ci(x) for the grain sizes i,

Ci = Fi δi H E0i , E0i = A �5
E Z 5

0i U5
w , (26)

with

�E = 1 − 0.288 ϒs , Z0i =
√

cfi

wsi
R0.6

pi

(
di

dm0

)eh

. (27)

For later use, it is convenient to rewrite the expressions
(Eq. 26) for the sediment concentrations as

Ci = FiGsiC∗ , C∗ = δ∗ HE0∗ , (28a)

Gsi =
(

di

d∗

)cs

, cs = 5

2
e f − 6ew + 9

2
+ 5eh , (28b)

where definitions 20, 21, and 27 have been used and in
which E0∗ is the entrainment of sediment with grain
diameter d∗. This result shows that, in the case where
F1 = F2 and cs < 0, the concentration of fine sediment
is larger than that of the coarse sediment. Conversely,
if cs > 0, there is more coarse than fine sediment in
suspension.

It follows from Eqs. 15 and 16 that the total sedi-
ment transport in the basic state, Qi = Qbi + Qsi, has
a longshore component that is independent of y, and a
nonconstant offshore-directed cross-shore component
(due to the transverse bed slope). Here, the bed slope-
induced sediment transport is neglected, as the change
in bed level due to divergence of this transport is much
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slower (∼ 10−5 m year−1) than the change in bed level
of sfcr (∼ 10−2 m year−1). Thus,

Qbi = FiGbiQb � FiGbi
3

2
νbU2

wVey,

Qsi � CiVey, (29)

where ey is a unit vector in the y-direction. Thus, to a
good approximation, the basic state defines a morpho-
dynamic equilibrium.

3.2 Linear stability analysis

The dynamics of small perturbations on the basic state
is investigated in order to gain knowledge about the sta-
bility of these features. Hereafter, perturbed variables
are denoted by primes. Hence, solutions are written as

κ = K(x)+κ ′, θ = �(x) + θ ′, E = E(x)+e′,

uw =Uw(x)+u′
w, u = u′ v=V(x) + v′,

zs = Z (x)+η′, zb =−H(x)+h′, Ci =Ci(x)+c′
i(i=1,2).

(30)

As the focus is on the initial growth of bedforms,
the equations are linearized with respect to the small
perturbations. The perturbed wavenumber κ ′, angle of
wave incidence θ ′, wave energy e′, and wave orbital
velocity u′

w are functions of the bottom perturbation
h′ and depend on x, y, and t. The final expressions
are given in Appendix A, together with the linearized
versions of equations for the perturbed flow.

Considering the sediment characteristics, perturba-
tions are added to the probabilities that characterize
the basic state, so that Fi = Fi + f ′

i , the mean grain size
φm = �m + φ′

m, and standard deviation υs = ϒs + υ ′
s.

The constraint on the probabilities (Eq. 11), in its lin-
earized form, reads

f ′
1 = − f ′

2. (31)

The perturbations in the mean grain diameter, mean
grain size, and standard deviation are expressed in f ′

1
by using expressions 12 and 31,

d′
m = − ln(2) dm0 φ′

m, φ′
m = ϒs√

F2 F1
f ′
1,

υ ′
s = ϒs(F2 − F1)

2F2 F1
f ′
1. (32)

Finally, the linearized versions of the mass balance
equations of sediment of class i are derived. Substitu-

tion variables containing a basic state part and pertur-
bations into Eq. 13 yields, after linearization,

(1− p)

(
Fi

∂h′

∂t
+La

∂ f ′
i

∂t

)
=−∇ · q′

i , i=1, 2 . (33)

This equation shows that, during the initial growth
stage of bedforms, only rearrangement occurs of ma-
terial in the active layer, i.e., the interaction between
the substrate and the active layer is negligible. From
the result above, two equations can be derived which
govern the time evolution of the perturbed bed level h′
and the fraction f ′

1 of fine sediment. The first follows by
adding the mass balances for i = 1 and i = 2 and using
the constraints F1 + F2 = 1, f ′

2 = − f ′
1. The second fol-

lows by back-substitution of these results into the mass
balance for class i. The results are

(1 − p)
∂h′

∂t
= −∇ · q1

′ − ∇ · q2
′, (34a)

0 = F1 ∇ · q2
′ − F2 ∇ · q1

′. (34b)

Note that, in the second equation, the term involving
the time derivative of f ′

1 has been neglected, as its
magnitude is much smaller than that of the terms on the
right-hand side. Expressions for q1

′ and q2
′ are given in

Appendix B.
The system of linear equations can be symbolically

written as

S · ∂

∂t
� = L · � , (35)

where � =(κ ′, θ ′, e′, u′
w, u′, v′, η′, c′

1, c′
2, f ′

1, h′)T is a vec-
tor of state variables, S is an 11 × 11 matrix of which all
elements are zero, except S(11, 11) = (1 − p), and L is
a linear matrix operator. The corresponding boundary
conditions are u′, h′ → 0 for x → ∞ and u′ = 0, h′ = 0
at x = 0. This system allows for solutions that represent
waves that travel along the coast and of which the
amplitude may exponentially grow (or damp) in time,

� = 
e
{
�̂(x) eiky+σ t

}
. (36)

Here, 
e denotes the real part of the solution, k denotes
the longshore wavenumber (which can be assigned any
value), the hat denotes the as yet unknown cross-shore
structure of the solutions, and σ denotes the complex
frequency. The growth rate and migration speed of
the perturbations are given by the complex frequency
(σ = σr + iσi). The real part σr is the growth rate and
the migration speed is given by Vm = −σi/k. If, for
specific choices of the model parameters, σr < 0 for all
k, the basic state is stable. The basic state is unstable
if there is a range of wavenumbers k for which σr > 0.
The mode that has the largest growth rate is called the
fastest growing or most preferred mode. The inverse
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of the growth rate σr gives a characteristic time scale
for the formation in nature (called the e-folding growth
time Tg).

To calculate the growth rates, the solutions (Eq. 36)
are substituted into system 35, which results in

σ S · �̂ = Lk · �̂ . (37)

Matrix operator Lk follows from matrix operator L by
replacing derivatives ∂/∂y by ik. The system (Eq. 37),
together with the boundary conditions, defines a gen-
eralized eigenvalue problem, with σ as the eigenvalues
and �̂(x) as the corresponding eigenfunctions.

Solutions of this eigenvalue problem were ob-
tained numerically using a spectral collocation method.
This method involves an expansion of variables in
Chebyshev polynomials, and it is subsequently imposed
that the equations are exactly obeyed at N collocation
points (for details, see Boyd 2001).

4 Results

4.1 Parameter values: default case

Parameter values are representative for the Long
Island inner shelf and are partly taken from Figueiredo
et al. (1982) and Schwab et al. (2000). Long Island is
located along the Atlantic coast of North America at a
latitude of ∼ 40◦ N, for which the Coriolis parameter

is f = 1 × 10−4 s−1. Going seaward, the depth of the
inner shelf increases from H0 = 14 m to Hs = 20 m,
and the inner shelf width is Ls = 5.5 km. Therefore,
the transverse bottom slope is β = (Hs − H0)/Ls ∼
1.1 × 10−3. Typical values for the offshore root-mean-
square wave height, offshore angle of wave incidence,
wave period, and alongshore wind stress are Hrms,s =
1.5 m, �s = −20◦, T = 11 s, and τsy = −0.4 N m−2

(southward), respectively. In the default experiment,
a uniform fraction of fine and coarse sand is used:
F1 = 0.7 and F2 = 0.3. Furthermore, a mean grain size
dm = 0.35 mm (�m = 1.5) is adopted with a sorting
parameter ϒs = 0.5. For the exponent in the transport
capacity function for bedload, cb = 0.75 is used. In
Eqs. 18–20, eh = 0.2, ew = 1.1, and e f = 0 are chosen,
such that in Eq. 28a, for the sediment concentration
in the basic state, the exponent cs = −1.1. Note that
roughness-induced turbulence effects are neglected for
the moment. Values of the other parameters are:
r = 2.0 × 10−3, νb = 5.6 × 10−5 s2 m−1, λb = 0.65, λs =
0.30 s m−1, ws∗ = 0.04 m s−1, E0∗ = 1.3 × 10−4, δ∗ =
0.20, c f∗ = 3.5 · 10−3, and p = 0.4. In the computations,
160 collocation points were used.

4.2 Basic state and linear stability analysis: default case

In this section, solutions of the morphodynamic (eigen-
value) problem are presented for the parameter values

k=k p

a b

k=k p

c

V

Fig. 3 Growth rates (a) and migration velocities (b) as a function
of the longshore wavenumber, default case. The most preferred
mode (with wavenumber k = kp) is indicated by the dashed black
lines. c Bottom pattern (grayscale; light: crests, dark: troughs) and
perturbations in the distribution of the mean grain size (contours;

solid lines: finer; dashed lines: coarser) for the most preferred
mode. The dashed white lines indicate the position of normal
and longshore cross-sections through the sfcr, which are shown
in Fig. 4. The arrow indicates the direction of the basic state
longshore velocity
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a b

Fig. 4 Normal (a) and longshore (b) cross-section through the
sfcr in Fig. 3c at the location of the white dashed lines. Shown are
perturbations in bottom h′ and in the fraction of fine grains f ′

1

(or similar, in mean grain size φ′
m). Quantities are scaled by their

maximum values

specified in the previous section. The characteristics
of the basic state were already discussed in Vis-Star
et al. (2007). In particular, the wave orbital velocity
Uw decreases monotonically with increasing depth
(Uw(x = 0) = 0.54 ms−1, Uw(x = Ls) = 0.40 ms−1). The
longshore current V points in the negative y direc-
tion and its magnitude increases with increasing depth
(V(x=0)= −0.36 ms−1, V(x= Ls)=−0.48 ms−1) since
it experiences less bottom friction for larger depth.

The growth rates and migration velocities for the
default case as a function of the longshore wavenum-
ber are shown in Fig. 3a and b, respectively. Sfcr,
for which a maximum growth rate is attained, have
a wavelength λp = 2πk−1

p ∼ 2.7 km. The correspond-
ing e-folding time scale for the initial growth is about
180 years. The sfcr migrate with a speed of 48 m year−1

in the downstream direction.
In Fig. 3c, the bottom pattern of the initially fastest

growing mode is shown. In this figure, the basic state
velocity is directed from top to bottom, and thus, sfcr
are characterized by an up-current orientation. The sfcr
extend approximately 1 km offshore. Furthermore, the
contour lines indicate the distribution of the fine and
coarse sediment over the sfcr. They reveal that the grain
size distribution is approximately 180◦ out of phase
with the ridge topography: the finest sediment is found
slightly upstream of the troughs. The latter is confirmed
by the normal and longshore cross-sections through the
sfcr (see Fig. 4), which show the bottom topography and
perturbed fraction of fine grains along the dashed white
lines in Fig. 3c.

The ratio of the maximum variation in the perturbed
fraction of fine grains and the maximum variation in
the bottom topography is [ f ′

1]/[h′] ∼ 0.56/H0. Thus,
in the case of a ridge of 2 m in height, the variation in
the fraction of fine grains will be ∼ 0.1. For diameters
of the fine and coarse grains of 0.28 and 0.59 mm,
respectively (as in the default case), this corresponds to
a total variation in the mean grain size of approximately
0.05 mm.

As long as F1 �= F2, Eq. 32 indicates that υ ′
s �= 0,

and thus, changes in the standard deviation of the
sediment mixture occur. Shore-normal and alongshore
cross-sections of the bottom topography and perturbed
standard deviation are shown in Fig. 5. Clearly, the
(finer) sediment, which is located in the troughs, is
better sorted (υ ′

s < 0) than the (coarser) sediment on
the crests. The ratio of the maximum variation in the
perturbed sediment sorting and the maximum variation
in the bottom topography is [υ ′

s]/[h′] ∼ 0.26/H0. Thus,
in the case of a ridge of 2 m in height, the variation in
sediment sorting will be ∼ 0.05, which is approximately
a 10% change with respect to the basic state sediment
sorting of 0.5.

4.3 Sensitivity to settling lag effects

In order to investigate the sensitivity of results to
settling lag effects in the concentration equation, the
parameter δ∗ was varied. The importance of settling lag
effects is, among other things, dependent on the grain
size of the sand that is considered: the smaller the grain

Fig. 5 Normal (a) and
longshore (b) cross-section
through the sfcr in Fig. 3c at
the location of the white
dashed lines. Shown are
perturbations in bottom h′
and in the standard deviation
υ ′

s. Quantities are scaled by
their maximum values

a b
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Fig. 6 Growth rates (a) and
migration velocities (b) as a
function of the longshore
wavenumber to show
sensitivity of model results to
settling lag effects. The dotted
curve is the result in case that
settling lag effects are
neglected, the straight curve
represents the default
experiment, and the dashed
curve is the result in case of a
δ∗ that is twice as large as in
the default experiment

no settling lag
default settling lag (dsl)

2x dsl

a b
no settling lag

default settling lag (dsl)
2x dsl

size, the stronger the settling lag effects. Results are
shown in Fig. 6 for a case in which settling lag effects
are not taken into account, a case in which δ∗ has its
default value and a case in which δ∗ has a value being
twice the default one.

Experiments reveal that settling lag effects are cru-
cial for the damping of high wavenumber perturba-
tions. Furthermore, growth rates become considerably
smaller when settling effects are included, whereas mi-
gration speeds are hardly affected. The mean grain size
and sorting pattern is not affected by settling lag effects.
On the other hand, the ratio of the maximum varia-
tion in the perturbed mean grain size/sediment sorting
and the maximum variation in the bottom topogra-
phy slightly decreases when settling lag effects become
more important.

4.4 Sensitivity to sediment characteristics

Experiments were conducted to explore the sensitivity
of model results to different values of the standard
deviation of the sediment mixture. For a fixed fraction
of the fine and coarse sediment in the mixture and for a
fixed mean grain size (default values), the standard de-
viation of the mixture was varied between zero and one.
Thus, in the case where ϒs = 0.0, sediment is uniform
with a grain size d1 = d2 = 0.35 mm, whereas for, e.g.,
ϒs = 1.0, sediment is nonuniform with d1 = 0.22 mm
and d2 = 1.0 mm.

Results (shown in Fig. 7) indicate that a poorly
sorted sediment mixture (large ϒs) causes sfcr to grow
slower compared to sfcr composed of a well-sorted
mixture. With an increase in standard deviation, the

Fig. 7 Contour plots of equal
a growth rate (10−2 year−1)
and b migration speed
(m year−1) of the initially
most preferred mode in the
k − ϒs plane. All other
parameter values, except
those of d1 and d2, are as in
the default case

a bgrowth rate migration speed



Ocean Dynamics (2009) 59:731–749 741

a b c

Fig. 8 Longshore spacing (a), e-folding growth time (b), and
migration speed (c) of the initially fastest growing mode as a
function of the standard deviation ϒs of the sediment mixture. All
other parameter values, except for d1 and d2, are as in the default

case. The uncertainty in longshore spacing is indicated with the
error bars. Uncertainties in the e-folding time and migration
speed are very small, so no error bars are shown

total transport of the two grain sizes in a mixture is
reduced. The latter can be interpreted as the result of
a more efficient packing of the bottom material when
grains of different sizes are present. Also, a decrease
in the migration speed of the most preferred mode is
found when ϒs is increased. An interpretation of the
results will be given in Section 5.

Figure 8 shows that the longshore spacing of the
most preferred mode does not change significantly if
the value of ϒs is varied. The change in e-folding growth
time (thus, in growth rate) is about a factor 3.5, and the
change in migration speed is about a factor 4 over the
complete range of standard deviation ϒs. The bottom
pattern of the most preferred mode remains unaltered
if the standard deviation of the mixture is varied and
is similar to that in Fig. 3c. The same holds for the
locations of the maxima and minima in the mean grain
size: a persistent 180◦ phase shift between the per-
turbed topography and the perturbed mean grain size
is found.

The influence of the relative weight percentage of
the grains in the coarse and fine size class on the charac-

teristics of sfcr was investigated. For a fixed mean grain
size and standard deviation of the mixture (default
values), the fraction of fine grains was varied such that
0.1 ≤ F1 ≤ 0.9 (if F1 equals 0 or 1, sediment is uni-
form). In the case where F1 = 0.1, this means consid-
ering a sediment mixture with d1 = 0.12 mm and d2 =
0.39 mm, whereas for, e.g., F1 = 0.9, the fine particles
have a diameter d1 = 0.31 mm and the coarse particles
a diameter d2 = 0.99 mm. Results (shown in Fig. 9)
indicate that a larger fraction of fine grains does not
significantly influence the wavelength of the preferred
mode, but it has a stabilizing effect on growth rates
and migration speeds. The change in e-folding growth
time and migration speed is about a factor 1.5 over the
entire range of values of probability F1. The cross-shore
extent of the bottom patterns slightly decreases with
an increase in F1. The distribution of the mean grain
size is not affected by changing the value of probability
F1. However, the sorting pattern is affected (results not
shown): for F1 > 0.5, the sediment is best sorted in the
troughs, whereas for F1 < 0.5, the best sorted sediment
is found on the crests. In the case where F1 = F2 = 0.5,

Fig. 9 Longshore spacing (a),
e-folding growth time (b), and
migration speed (c) of the
initially fastest growing mode
as a function of the fraction of
fine grains F1 of the sediment
mixture. The uncertainty in
longshore spacing is indicated
with the error bars.
Uncertainties in the e-folding
time and migration speed are
very small, so no error bars
are shown

a b c
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Table 1 Bedform characteristics (longshore spacing, cross-shore
extent, growth rate, e-folding growth time, migration speed, H0
[ f ′

1]/[h′], and H0 [υ ′
s]/[h

′]) of the initially fastest growing mode
as a function of the mean grain diameter dm0 of the sediment
mixture

dm0 (mm) 0.20 0.30 0.40 0.50 0.60

λp (km) – 3.5 2.1 1.6 1.2
cross-shore extent (km) – 1.2 0.7 0.5 0.4
σr (0.01 year−1) – 0.45 0.61 0.63 0.63
Tg (years) – 223 164 159 159
Vm (m year−1) – −62 −38 −27 −20
H0 [ f ′

1]/[h′] – 0.58 0.52 0.44 0.35
H0 [υ ′

s] /[h′] – 0.28 0.24 0.21 0.17

the sediment sorting is equal to that of the basic state in
the whole domain.

Also, the mean grain size dm0 was varied. Keeping
all the other parameters at their default values, a mean
grain size of dm0 = 0.20 mm implies that d1 = 0.16 mm
and d2 = 0.34 mm. A mixture with a mean grain size
of dm0 = 0.60 mm consists of small grains with a diam-
eter d1 = 0.48 mm and coarse grains of diameter d2 =
1.02 mm. Results are summarized in Table 1. Within
the present parameter setting, the sediment mixture
requires a mean grain size dm0 > 0.20 mm to obtain
the growth of sfcr. Once this threshold is exceeded, an
increase in the mean grain size results in an increase
in growth rate and a decrease in migration speed. Fur-
thermore, a reduction in alongshore spacing between
successive crests and a decrease in the cross-shore ex-
tent of sfcr is obtained for an increase in dm0. Neither
the phase shift between sfcr and perturbations in the

mean grain size nor the sorting pattern are affected by
the mean grain size of the mixture.

In the previous experiments, it was assumed that the
basic state properties of the sediment mixture (grain
size distribution function, mean grain size, and standard
deviation) have a fixed value in space. However, ob-
servations indicate that, often, sediment becomes finer
as it goes offshore. To investigate the effect of an x-
dependent sediment distribution, a run was performed
for a grain size fraction, which is linear dependent on x:
F1 = 0.5 at the shoreface to F1 = 0.8 at the transition
to the outer shelf. The grain size of both the coarse and
fine fractions are the same as in the default experiment.
Thus, the mean grain size and the sorting parameter
are also dependent on the cross-shore position. Re-
sults (not shown) indicate that bedform characteristics
are hardly affected by including x-dependent sediment
properties. The sorting pattern will change as soon
as F1 < F2 in that part of the domain where sfcr are
situated: the sediment is finer and more poorly sorted
in the troughs, whilst it is coarser and better sorted on
the crests.

4.5 Sensitivity to hiding and roughness-induced
turbulence

In this section, the effect of including a grain-size-
dependent friction coefficient in the sediment trans-
port is investigated. Thus, parameter eh in Eq. 18 was
changed from eh = 0 into eh = 1.0. Consequently, pa-
rameter cs in Eq. 28a changed from a negative value
(cs = −1.1) into a positive value (cs = 1.4). Figure 10

Fig. 10 As Fig. 3, but now,
eh = 1, so that entrainment of
sediment depends on bottom
roughness. The white dashed
lines in c indicate the position
of normal and longshore
cross-sections through the
sfcr, which are shown in
Fig. 11. Here, entrainment of
sediment depends on bottom
roughness such that cs = 1.4

k=k p

a b

k=k p

c
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shows the growth rates and migration velocities as a
function of the longshore wavenumber.

A maximum growth rate of about 0.66 × 10−2 year−1

is found for k = kp ∼ 2.4 km−1, which corresponds to
a longshore wavelength of the bedforms of ∼ 2.7 km.
This initially most preferred mode migrates with a
speed of ∼ 65 m year−1 in the downstream (southward)
direction. Taking into account roughness-induced tur-
bulence effects thus leads to an increase in growth rates
and a slight increase in migration speeds. The bottom
pattern of the most preferred mode is shown in Fig. 10c
and shows up-current-oriented sfcr that extend approx-
imately 1 km offshore. The contour lines in this figure
indicate the perturbations in the distribution of the
mean grain size. Clearly, including roughness-induced
turbulence effects leads to a change in the phase dif-
ference between the ridge topography and grain size
distribution: the finest sediment is found slightly up-
current of the crests instead of the troughs. The ratio
of the maximum variation in f ′

1 and the maximum
variation in h′ increases to become [ f ′

1]/[h′] ∼ 0.84/H0.
Cross-sections of the bottom perturbations and per-

turbations in the standard deviation of the sediment
mixture are given in Fig. 11. Clearly, the (finer) sed-
iment, which is located on the crests, is better sorted
(υ ′

s < 0) than the (coarser) sediment in the troughs. The
ratio of the maximum variation in the perturbed sedi-
ment sorting and the maximum variation in the bottom
topography [υ ′

s]/[h′] ∼ 0.41/H0 and is larger compared
to the case where roughness-induced turbulence effects
were neglected.

4.6 Sensitivity to other model parameters

The dependence of results on wave height, wave period,
and angle of wave incidence at the offshore boundary
was investigated, as well as the dependence on the
water depth Hs at the outer shelf. The resulting trends
in the growth rate, migration speed, and shape of bed-

forms are similar to those reported by Vis-Star et al.
(2007). The phase shift between maxima in f ′

1 and h′
is very robust (180◦) under changes in offshore wave
properties

Finally, the dependence of model results on the
bed slope parameter λs in Eq. 16 was investigated. It
turns out that, with decreasing values of λs → 0, the
sfcr become shorter and they grow faster. In the limit,
λs → 0, i.e., suspended load transport is not affected by
the presence of bed slopes, the ridges grow a factor of
2 larger than in the default case, and their wavelengths
are 20% smaller.

5 Discussion

5.1 Physical interpretation

A physical interpretation of the results presented so far
will be given in this section. The growth of sfcr in the
present model is due to three different mechanisms.
The first mechanism was already described by Trow-
bridge (1995), in which the offshore deflection of the
storm-driven flow over sfcr for a transversely sloping
bottom of the inner shelf is essential. The second is
the one described by Calvete et al. (2001), which in-
volves both the offshore deflection of the current over
sfcr and cross-shore gradients in the depth-averaged
volumetric suspended sediment concentration in the
basic state. The third mechanism was found most re-
cently and described by Vis-Star et al. (2007) as the
wave–bedform feedback mechanism. The up-current-
oriented sfcr affect the wave field in such a way that
wave rays converge on the upstream sides of sfcr. As
a result, the perturbed wave energy in these areas in-
creases, and stirring of sediment by waves is enhanced.
Subsequently, the storm-driven flow transports the ad-
ditional sediment as suspended load downstream. The
third mechanism is more effective than the first two in

a b

Fig. 11 Normal (a) and longshore (b) cross-section through the
sfcr in Fig. 10 at the location of the white dashed lines. Shown
are perturbations in bottom h′ and in the standard deviation

υ ′
s. Quantities are scaled by their maximum values. Here, en-

trainment of sediment depends on bottom roughness such that
cs = 1.4
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the case of obliquely incident waves and even active in
the absence of a transversely sloping bed. Both growth
and migration of sfcr are controlled by suspended load
transport of sediment in the case of the wave–bedform
feedback mechanism. Below, an explanation is given of
(1) the damping of high wavenumber perturbations due
to settling lag effects, (2) the distribution of the mean
grain size and standard deviation over sfcr, and (3) the
sensitivity of model results to changes in characteristics
of the sediment mixture.

5.1.1 Damping of high wavenumber perturbations
due to settling lag effects

For small-scale (high wavenumber) perturbations, the
terms in the concentration equation (Eq. 54) involving
y derivatives constitute the major balance; thus,

c′
i � −Cm

H
h′. (38)

As the left-hand side of this equation defines the di-
vergence of suspended load transport of class i, it
follows

∇ · q′
si = wsi Ci

δi H

(
M3 f ′

1 + 5u′
w

Uw

+ f ′
i

Fi

)
, (39)

with

M3 = 5ϒs

(
eh ln 2√

F1 F2
+ 0.288(F1 − F2)

2�E F1 F2

)
.

The divergence of the suspended load transport of both
classes thus becomes

∇ · (q′
s1 + q′

s2

) = ws∗ C∗
δ∗ H

(
B1

u′
w

Uw

+ B2 f ′
1

)
, (40)

with

B1 = 5
2∑

i=1

(
di

d∗

)2ew

FiGsi,

B2 =
2∑

i=1

(
di

d∗

)2ew

Gsi
(
M3 Fi + (−1)i−1

)
. (41)

For the default parameter values, B1 is positive, B2

is negative, u′
w ∝ h′, and f ′

1 ∝ −h′. As a consequence,
at the crests (h′ > 0), the suspended load transport is
divergent, which explains that high wavenumber per-
turbations are more effectively damped when settling
lag effects are included. This result is consistent with
results obtained by Schramkowski et al. (2002) for
local bedforms in tidal embayments. They argue that,
for long-wave perturbations, the sediment dynamics
can be approximated by a balance between erosion
and deposition. However, in the case of short-wave

perturbations, the advective contributions to the sed-
iment concentration cannot be neglected and have a
stabilizing effect.

5.1.2 Distribution of the mean grain size and standard
deviation over sfcr

To understand the distribution of the mean grain size
and sorting of sediment over the bedforms, the evolu-
tion equation (Eq. 34b) for the perturbed fraction of
fine sand is analyzed. In the case where only suspended
load transport is considered (it dominates over bedload
transport), bed slope effects are neglected and F1 and
F2 are constants, it reduces to

−M1

(
H

d
dx

(
C∗
H

)
u′ + 5

VC∗
Uw

∂u′
w

∂y

)

= VC∗ (M2 + M1 M3)
∂ f ′

1

∂y
, (42)

where

M1 = F1 F2(Gs1 − Gs2),

M2 = F2Gs1 + F1Gs2. (43)

To derive this result, expression 28a for the concen-
trations Ci(x) in the basic state has been used. Also,
since settling lag effects are ignored, the terms on the
left-hand side of Eq. 54 for the perturbed sediment
concentrations vanish, so that these equations describe
a balance between erosion and deposition of sediment.

In Eq. 42 above, V < 0 (southward) and the cross-
shore gradient in the depth-averaged volumetric sus-
pended sediment concentration C∗/H is negative, i.e.,
d/dx (C∗/H) < 0. In the default case, eh = 0 and cs < 0;
hence, in the basic state, the suspended sediment con-
centration of fine sediment is larger than that of coarse
sediment (Gs1 > Gs2). This implies that parameter M1

is positive. Furthermore, (M2 + M1 M3) is positive for
default parameter values.

The distribution of the mean grain size over the
bedforms is dependent on the relative magnitude of the
two terms on the left-hand side of Eq. 42. In previous
work, only the term related to u′ was present, as in-
teractions between bedforms and waves were ignored.
In that case, the distribution of the fraction of fine
grains is related to the perturbed cross-shore veloc-
ity. Trowbridge (1995) already showed that u′ > 0 if
h′ > 0. Hence, ∂ f ′

1/∂y ∝ −u′ ∝ −h′. As a consequence,
the distribution of the mean grain size for suspended
load is 90◦ out of phase with the topography such that
the finer sand is found on the seaward (down-current)
flank of sfcr. In this paper, wave–bedform interactions
are included and appear to play a dominant role in both
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the evolution of the bottom and the mean grain size.
Thus, the term proportional to ∂u′

w/∂y dominates over
the term proportional to u′ in Eq. 42. It follows immedi-
ately that f ′

1 ∝ −u′
w. The study by Vis-Star et al. (2007)

revealed that the pattern of the perturbed wave orbital
velocity is slightly shifted up-current with respect to
that of the bottom. Thus, an approximate 180◦ phase
shift exists between the pattern of the mean grain size
for suspended load and the topography. According to
Eq. 32, υ ′

s ∝ − f ′
1 for F1 > F2, and thus, the perturbed

sorting of sediment is in phase with the topography.
This explains the results shown in Section 4.2, where the
finer and better-sorted sediment is found in the troughs
and the coarser and more poorly sorted sediment on
the crests.

As was shown in Section 4.5, including roughness-
induced turbulence effects leads to a change in the
phase difference between the perturbed mean grain
size and the bedforms. Roughness-induced turbulence
effects cause cs to become positive, which implies
that Gs1 < Gs2 and, thus, M1 < 0. The sign of (M2 +
M1 M3) does not change and is still positive. There-
fore, the balance in Eq. 42 becomes f ′

1 ∝ u′
w ∝ h′ due

to the wave–bedform feedback mechanism. This ex-
plains the 0◦ phase shift between the bottom and mean
grain size pattern, as obtained in Section 4.5. The finer
(coarser) sediment, which is now located on the crests
(in the troughs), is still better (more poorly) sorted, as
υ ′

s ∝ − f ′
1 still holds.

5.1.3 Sensitivity results to changes in sediment
characteristics

For a bimodal sediment mixture compared to uniform
sediment, both the growth rate and migration speed
of sfcr decrease if the standard deviation is increased
(see Fig. 7). The latter is caused by a reduction of the
entrainment of both fine and coarse sediment due to
a better packing of the sediment for a more poorly
sorted sediment mixture (which is represented by the
straining factor λE in the entrainment of sediment).
In case that wave–bedform feedbacks are important,
both growth and migration are controlled by suspended
load transport and, thus, reduce with an increase in
the standard deviation of the sediment mixture. Note
that the decrease in migration speed with increase in
standard deviation of the mixture is in contrast with
previous results (Walgreen et al. 2003), which is due
to the fact that, in their case, the migration speed was
determined by bedload transport due to the neglect of
wave–bedform interactions.

Figure 9 reveals that growth rates and migration
speeds become smaller if the fraction F1 of fine sed-

iment is increased. This is because a larger F1, while
keeping the standard deviation of the mixture fixed,
implies a larger difference between the grain sizes of
the coarse and fine sediment, and thus, hiding effects
are more effective. Finally, the finding that growth
of sfcr requires a minimum mean grain size of the
sediment mixture (Table 1) is due to the fact that a
smaller mean grain size causes settling lag effects in the
concentration equation to become larger with respect
to deposition and erosion terms. Thus, if the mean
grain size is decreased, a more effective damping of all
bottom perturbations occurs.

5.2 Comparison with observations

Most field data on sfcr, including sfcr on the Long
Island shelf, reveal a phase difference of approximately
90◦ between the mean grain size and the topography:
the coarsest sand appears on the landward (up-current)
flank and the finest sediment on the seaward (down-
current) flank. However, the modeled phase shift be-
tween the pattern of the mean grain size and the bot-
tom topography for the default case is 180◦: troughs
(crests) consist of the finest (coarsest) sediment. The
latter is attributed to the importance of wave–bedform
interactions. The 180◦ phase difference between f ′

1 and
h′ is quite robust. It only changes when the hiding
coefficient for suspended load transport cs becomes
positive, which is the case when the grain size depen-
dency of the friction coefficient is taken into account.
In that case, the mean grain size and topography are
approximately in phase, with the finest sediment on the
crests and coarsest sediment in the troughs. Notice that,
for some of the sfcr, a phase shift between the mean
grain size and topography is observed that is different
from 90◦. According to Hoogendoorn and Dalrymple
(1986), the finest sediment is observed at the base of the
downstream flanks of the Canadian sfcr, which seems to
indicate a phase shift close to 180◦. Figueiredo (1980)
reports for the ridges on the inner shelf of southern
Brazil that the coarse sediment is found in the troughs
and the medium to fine sand appears on the ridge crests,
thus implying a 0◦ phase shift. Grain size variations are
also observed over other type of bedforms. Miselis and
McNinch (2006) report for nearshore oblique bars of
North Carolina that the coarser sediment almost always
appears in the troughs. Both 0◦ and 180◦ phase shifts
between mean grain size and topography are observed
for tidal sand waves in the southern North Sea (Roos
et al. 2007).

A considerable improvement with respect to
Walgreen et al. (2003) is that the modeled maximum
variation in the fraction of fine and coarse sediment
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over sfcr has increased. The latter is contributed to
the fact that interactions between waves and the
topography are included. According to model results
in case cs < 0, variations in the mean grain size dm

are ∼ 0.02 [h′] mm. For heights of sfcr h′ ∼ 1 − 6 m
(observed values), the mean grain size would vary
between 0.02 mm and 0.12 mm. These values become
slightly higher for simulations with cs > 0: grain size
variations are 0.03–0.18 mm. Observations (e.g.,
Schwab et al. 2000, for the Long Island shelf) suggest
that the variation in the mean grain size is in the order
of 0.25–0.40 mm. Inspection of grain size variations
on other shelves, as presented in Swift et al. (1978)
and Stubblefield and Swift (1981), reveals grain size
variations in the range of 0.05–0.65 mm. Thus, modeled
grain size variations are slightly smaller than observed,
but seem to be the right order of magnitude.

In literature, mostly qualitative information is given
about variations in the standard deviation of sand over
sfcr. For sfcr in general, including the sfcr on the Long
Island shelf, sediment is best sorted on the crest and
most poorly sorted in the troughs (Swift et al. 1972,
1978; Schwab et al. 2000). Data from sfcr in the German
Bight (Antia 1993) indicate a better degree of sorting
on the downstream flank. In the model, F1 > F2, which
implies that υ ′

s ∝ − f ′
1 (see Eq. 32). Thus, the finer

sediment ( f ′
1 > 0) is better sorted (υ ′

s < 0). Therefore,
model results for which the friction coefficient is grain-
size-dependent (cs > 0) are in best agreement with the
data for Long Island.

5.3 Model simplifications

The model used in this paper is based on several sim-
plifying assumptions. First, a linear stability analysis
is employed, which only yields information about the
initial growth of and grain sorting over sfcr. If wave–
bedform feedbacks are taken into account, both growth
and migration of sfcr are still controlled by suspended
load transport. However, in the case of finite-amplitude
bedforms, exchanges of sediment between the active
layer and the underlying substrate will occur, and they
will probably have profound implications for the dy-
namics of the ridges.

In recent years, studies by Murray and Thieler
(2004), Coco et al. (2007a, b), and Huntley et al.
(2008) have focused on investigating so-called “sorted
bedforms,” which are particularly found on sediment-
starved shoreface and inner shelf environments. The
sorted bedforms are found in very poorly sorted sedi-
ment mixtures, and a robust phase shift of 90◦ between
f ′
1 and h′ is observed. Inspired by their work, the effect

of including the term La0
∂ f ′

1
∂t , which was excluded on

the left-hand side of Eq. 34b, was investigated. This
term defines the adjustment time scale of the grain size
distribution to bottom changes, which, in general, will
be very small for sfcr. For the default model setting,
the thickness of the active layer in the basic state is
La0 = dm2ϒs ∼ 5 × 10−4 m. In additional simulations,
the latter was increased to a value of ∼ 3 m, which is
the value used for sorted bedforms. The distribution
of the mean grain size and standard deviation over sfcr
was not affected. Only increasing La0 up to about 10 m
would change the phase shift between h′ and f ′

1 from
180◦ to 0◦. However, this is certainly not realistic for
sfcr.

6 Conclusions

The main objective of the present study was to obtain
a better understanding of the initial formation of sfcr
and the corresponding grain size distribution. For this,
a model was developed and analyzed, which consists
of the depth-averaged shallow water equations, a sed-
iment transport formulation, and mass balance of sedi-
ment. A new aspect in the hydrodynamic module (with
respect to previous studies on sfcr) is that the behavior
of waves is described by equations, which follow from
physical principles, rather than by parameterizations.
The inclusion of feedbacks between the growing bed-
forms and the waves is important. The sediment is
represented by two grain size classes. The important
new aspects in the sediment transport module are that
the entrainment of suspended sediment depends on
bottom roughness, and settling lag effects are included
in the sediment concentration equation.

Default model experiments for a setting that re-
sembles the Long Island micro-tidal inner shelf show
that the growth and migration of sfcr stabilizes for a
bimodal sediment mixture compared to uniform sedi-
ment. Furthermore, results reveal the presence of the
finer sand approximately in the troughs and the coarser
sand slightly up-current of the crests. In the case where
roughness-induced turbulence effects are taken into ac-
count in the suspended sediment transport, the trend is
the opposite: the coarser sand is located in the troughs
and the finer sand on the crests. Both results are not
in agreement with field data for the Long Island sfcr in
which the coarsest sand is found on the landward flank
and the finest sand on the seaward flank. However, field
data on, e.g., Canadian and Brazilian sfcr, and also on
some other types of bedforms, reveal that, often, coarse
sediment is observed in the troughs. An interesting
model result is that the modeled maximum variation in
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the probabilities of fine and coarse sediment over the
sfcr has the right order of magnitude (10−1 mm). The
inclusion of wave–bedform interactions is crucial here.

A physical analysis has revealed that the phase shift
between the mean grain size and the bottom topogra-
phy obtained by the model is due to the wave–bedform
feedback mechanism. It causes convergence of wave
rays at the upstream sides of sfcr and, thus, results in en-
hanced stirring of sediment by waves at these locations.
In the case where roughness-induced turbulence effects
are neglected, the additional entrainment of grains is
more effective for grains of size smaller than the mean
compared to grains of size larger than the mean. Thus,
more fine than coarse sand is eroded from the crests,
and therefore, the crests become coarser. On the other
hand, more fine than coarse sand is deposited in the
troughs where wave energy is reduced, which results
in troughs consisting of finer sand. In the case where
the friction coefficient is dependent on the physical
roughness of the seabed, results are fundamentally dif-
ferent. Due to a change in grain size and ripple size
from the coarse to fine domains, the physical roughness
of the seabed is larger (smaller) in areas where the
sediment is relatively coarse (fine). Including this effect,
the entrainment of grains of size larger than the mean
is enhanced compared to the entrainment of grains of
size smaller than the mean: troughs become coarser
and crests become finer. Furthermore, the effects of
settling lag are crucial to cause damping of small-scale
perturbations.

Appendix A: Expressions for the perturbed wave
variables and flow variables

The equations for the perturbed wave variables follow
from linearizing the dispersion relation, wave consis-
tency equation, and the energy balance. The results
are

κ ′ =
(

K2

KH + 1
2 sinh(2KH)

)
h′, (44a)

∂

∂x

(
K cos �θ ′) − ∂

∂y

(
K sin � θ ′)

= − ∂

∂x

(
sin � κ ′) − ∂

∂y

(
cos � κ ′) , (44b)

∂

∂x

(−Cg cos � e′) + ∂

∂y

(
Cg sin � e′)

= − ∂

∂x

(
E c′

gx

)
− ∂

∂y

(
E c′

gy

)
− D ′. (44c)

Here, c′
gx =(−cos �c′

g+Cg sin �θ ′) and c′
gy =(sin � c′

g+
Cg cos � θ ′) are the x and y components of the per-
turbed group velocity, respectively. The expression for
the cross-shore structure of the perturbed wave orbital
velocity, which is, e.g., used in calculating D ′, follows
from Eq. 6,

u′
w = Uw

(
e′

2E
− Hκ ′ − Kh′

tanh(KH)

)
. (45)

The perturbed cross-shore and longshore velocity com-
ponent and free surface elevation are denoted by u′, v′,
and η′, respectively. Linearization of Eqs. 7–9 yields

(
∂

∂y
+ rUw

H

)
u′ − f v′ + g

∂η′

∂x
= 0 , (46)

(
dV
dx

+ f
)

u′+
(

V
∂

∂y
+ rUw

H

)
v′+g

∂η′

∂y
=−r V

H
u′

w , (47)

(
dH
dx

+ H
∂

∂x

)
u′ + H

∂v′

∂y
= V

∂h′

∂y
. (48)

Appendix B: Perturbed sediment transport

The perturbed transport of sediment of class i reads

q′
i = q′

bi + q′
si , (49)

as follows from Eq. 14. The bed load contribution is
derived from Eq. 15, with the result

qbi
′ =GbiQb f ′

i +FiQbg′
bi+FiGbiqb

′, (i=1, 2) . (50)

Here, Gbi, Fi, and Qb are the basic state transport
capacity function for bedload, the distribution function
for grains in class i, and the bedload sediment transport
in case of a uniform sediment sample, respectively (see
Section 3.1). Linearizing the most correct expression
in Eq. 15 with respect to the perturbation in the mean
grain size φ′

m results in the perturbed transport capacity
function for bedload transport:

g′
bi = cb ln 2 Gbi φ

′
m, (51)

where cb is a coefficient, which indicates the strength of
hiding. Note that g′

bi is a function of f ′
1, which follows

from Eq. 32. The linearized form of Eq. 15 for qb is

qb
′ = 3

2
νb

(
U2

wu′ − λbU3
w

∂h′

∂x
, 2UwVu′

w + U2
wv′

− λbU3
w

∂h′

∂y

)
. (52)
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According to Eq. 16, the perturbed suspended load
transport of sediment of class i is

q′
si = Ci

(
v′ − λsU2

w∇h′) + V c′
iey , (53)

with c′
i as the perturbations in the sediment concentra-

tions. To compute the latter, the concentration equa-
tions (Eq. 17) are linearized. Defining λ′

E and Z ′
i as

the perturbations of the straining parameter and of
parameter Zi, respectively, it follows

u′ H
d

dx

(
Ci

H

)
+ V

Ci

H
∂h′

∂y
+ V

∂c′
i

∂y

= wsiCi

δi H

[
5

(
λ′

E

�E
+ Z ′

i

Zi0
+ u′

w

Uw

)
+ f ′

i

Fi
− h′

H
− c′

i

Ci

]
.

(54)

Here, continuity equation (Eq. 48) has been applied,
and Eq. 18 yields that

λ′
E = −0.288υ ′

s , Z ′
i = −Z0ieh

d′
m

dm0
, (55)

with d′
m and υ ′

s being defined in Eq. 32.
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