325 research outputs found
Presynaptic M1 muscarinic cholinoceptors mediate inhibition of excitatory synaptic transmission in the hippocampus in vitro
The effects of the cholinoceptor agonist, carbachol (CCh), were examined in the rat hippocampal slice preparation. Intracellular recordings from CA1 pyramidal neurones revealed that CCh (1–3 μM) inhibited excitatory postsynaptic responses evoked by stimulation of the Schaffer collateral/commissural pathway while, at the same time, direct excitability was enhanced. Extracellularly, CCh produced a concentration-dependent reduction of the amplitude of the field excitatory postsynaptic potential (field EPSP) recorded in the CA1 apical dendritic region. The muscarinic receptor antagonist, pirenzepine, competitively antagonized the effects of CCh on the field EPSP with a pA2 of 7.4. These results confirm earlier reports of a presynaptic inhibitory action of CCh in the hippocampal CA1 region and provide strong evidence that this effect is mediated by muscarinic receptors of the M1 subtype
Characteristics of long-duration inhibitory postsynaptic potentials in rat neocortical neurons in vitro
1. The characteristics of long-duration inhibitory postsynaptic potentials (l-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from anin vitro slice preparation.
2. Stimulation with suprathreshold intensities evoked l-IPSPs with typical durations of 600–900 msec at resting membrane potential. Conductance increases of 15–60% were measured at the peak amplitude of l-IPSPs (150–250 msec poststimulus).
3. The duration of the conductance increases during l-IPSPs displayed a significant voltage dependence, decreasing as the membrance potential was depolarized and increasing with hyperpolarization.
4. The reversal potential of l-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that l-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance.
5. l-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during l-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes.
6. l-IPSPs are not blocked by bicuculline but are blocked by baclofen
Computational chemical analysis of unconjugated bilirubin anions and insights into pKa values clarification
The pKa, the negative logarithm of the acid dissociation equilibrium constant, of the carboxylic acid groups of unconjugated bilirubin in water is a discussed issue because there are quite different experimental values reported. Using quantum mechanical calculations we have studied the conformational behavior of unconjugated bilirubin species (in gas phase and in solution modeled implicitly and explicitly) to provide evidence that may clarify pKa values because of its pathophysiological relevance. Our results show that rotation of carboxylate group, which is not restricted, settles it in a suitable place to establish stronger interactions that stabilizes the monoanion and the dianion to be properly solvated, demonstrating that the rationalization used to justify the high pKa values of unconjugated bilirubin is inappropriate. Furthermore, low unconjugated bilirubin (UCB) pKa values were estimated from a linear regression analysis.Fil: Vega Hissi, Esteban Gabriel. Universidad Nacional de San Luis. Facultad de Quimica, Bioquimica y Farmacia. Departamento de Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Estrada, Mario Rinaldo. Universidad Nacional de San Luis. Facultad de Quimica, Bioquimica y Farmacia. Departamento de Quimica; ArgentinaFil: Lavecchia, Martín José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Química Inorgánica; ArgentinaFil: Pis Diez, Reinaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Química Inorgánica; Argentin
A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro
Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold
Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.
OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke
Recommended from our members
Evaluating energy flows through jellyfish and gulf menhaden (Brevoortia patronus) and the effects of fishing on the northern Gulf of Mexico ecosystem
Fishery management production models tend to stress only the elements directly linked to fish (i.e. fish, fish food, and fish predators). Large coastal jellyfish are major consumers of plankton in heavily fished ecosystems; yet, they are frequently not included as model components. We explore the relationship between gulf menhaden (Brevoortia patronus) and the large scyphozoan jellyfish (Aurelia spp. and Chrysaora sp.), and provide an examination of trophic energy transfer pathways to higher trophic levels in the northern Gulf of Mexico. A trophic network model developed within the ECOPATH framework was transformed to an end-to-end model to map foodweb energy flows. Relative changes in functional group productivity to varying gulf menhaden consumption rates, jellyfish consumption rates, and forage fish (i.e. gulf menhaden, anchovies, and herrings) harvest rates were evaluated within a suite of static, alternative energy-demand scenarios using ECOTRAN techniques. Scenario analyses revealed forage fish harvest enhanced jellyfish productivity, which, in turn, depressed menhaden productivity. Modelled increases in forage fish harvest caused pronounced changes in ecosystem structure, affecting jellyfish, marine birds, piscivorous fish, and apex predators. Menhaden were found to be a more efficient and important energy transfer pathway to higher trophic levels compared with jellyfish. A simulated increase in jellyfish abundance caused the relative production of all model groups to decline. These outcomes suggest that jellyfish blooms and forage fish harvest have demonstrable effects on the structure of the northern Gulf of Mexico ecosystem.Keywords: Gulf of Mexico, forage fish, ECOPATH, foodweb, ECOTRAN, jellyfish, Gulf menhaden, ecosystem-based fishery management, ecosystem modelKeywords: Gulf of Mexico, forage fish, ECOPATH, foodweb, ECOTRAN, jellyfish, Gulf menhaden, ecosystem-based fishery management, ecosystem mode
Species and abundance of ectoparasitic flies (Diptera) in pied flycatcher nests in Fennoscandia
Peer reviewe
Sequence-specific binding of single-stranded RNA: is there a code for recognition?
A code predicting the RNA sequence that will be bound by a certain protein based on its amino acid sequence or its structure would provide a useful tool for the design of RNA binders with desired sequence-specificity. Such de novo designed RNA binders could be of extraordinary use in both medical and basic research applications. Furthermore, a code could help to predict the cellular functions of RNA-binding proteins that have not yet been extensively studied. A comparative analysis of Pumilio homology domains, zinc-containing RNA binders, hnRNP K homology domains and RNA recognition motifs is performed in this review. Based on this, a set of binding rules is proposed that hints towards a code for RNA recognition by these domains. Furthermore, we discuss the intermolecular interactions that are important for RNA binding and summarize their importance in providing affinity and specificity
c-Myc Regulates Self-Renewal in Bronchoalveolar Stem Cells
BACKGROUND: Bronchoalveolar stem cells (BASCs) located in the bronchoalveolar duct junction are thought to regenerate both bronchiolar and alveolar epithelium during homeostatic turnover and in response to injury. The mechanisms directing self-renewal in BASCs are poorly understood. METHODS: BASCs (Sca-1(+), CD34(+), CD31(-) and, CD45(-)) were isolated from adult mouse lung using FACS, and their capacity for self-renewal and differentiation were demonstrated by immunostaining. A transcription factor network of 53 genes required for pluripotency in embryonic stem cells was assessed in BASCs, Kras-initiated lung tumor tissue, and lung organogenesis by real-time PCR. c-Myc was knocked down in BASCs by infection with c-Myc shRNA lentivirus. Comprehensive miRNA and mRNA profiling for BASCs was performed, and significant miRNAs and mRNAs potentially regulated by c-Myc were identified. We explored a c-Myc regulatory network in BASCs using a number of statistical and computational approaches through two different strategies; 1) c-Myc/Max binding sites within individual gene promoters, and 2) miRNA-regulated target genes. RESULTS: c-Myc expression was upregulated in BASCs and downregulated over the time course of lung organogenesis in vivo. The depletion of c-Myc in BASCs resulted in decreased proliferation and cell death. Multiple mRNAs and miRNAs were dynamically regulated in c-Myc depleted BASCs. Among a total of 250 dynamically regulated genes in c-Myc depleted BASCs, 57 genes were identified as potential targets of miRNAs through miRBase and TargetScan-based computational mapping. A further 88 genes were identified as potential downstream targets through their c-Myc binding motif. CONCLUSION: c-Myc plays a critical role in maintaining the self-renewal capacity of lung bronchoalveolar stem cells through a combination of miRNA and transcription factor regulatory networks
- …
