145,267 research outputs found
Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer
open236siWe are grateful for important physics discussions with Pasquale Blasi, Fiorenza Donato, Jonathan Feng, and Igor Moskalenko. We thank former NASA Administrator Daniel S. Goldin for his dedication to the legacy of the ISS as a scientific laboratory and his decision for NASA to fly AMS as a DOE payload. We also acknowledge the continuous support of the NASA leadership, particularly William H. Gerstenmaier, and of the JSC and MSFC flight control teams that have allowed AMS to operate optimally on the ISS for over nine years. We are grateful for the support of Jim Siegrist, Glen Crawford, and their staff of the DOE including resources from the National Energy Research Scientific Computing Center under Contract No. DE-AC02-05CH11231. We gratefully acknowledge the strong support from CERN including Fabiola Gianotti, and the CERN IT department including Bernd PanzerSteindel, and from the European Space Agency including Johann-Dietrich Worner and Simonetta Di Pippo. We also acknowledge the continuous support from MIT and its School of Science, Michael Sipser, and the Laboratory for Nuclear Science, Boleslaw Wyslouch. Research supported by: Chinese Academy of Sciences, Institute of High Energy Physics, Institute of Electrical Engineering, China Academy of Space Technology, National Natural Science Foundation, and Ministry of Science and Technology, the China Scholarship Council, the Shandong, Jiangsu, and Guangdong provincial governments, Shandong University, and Shandong Institute of Advanced Technology, China; the Academy of Finland, Project No. 321882, Finland; CNRS/IN2P3 and CNES, France; Pascale Ehrenfreund, DLR under Grants No. 50OO1403 and 50OO1805 and JARA-HPC under Project No. JARA0052, Germany; INFN and ASI under ASI-INFN Agreements No. 2014-037-R.1-2017 and No. 2019-19-HH.0 and ASI-University of Perugia Agreement No. 2019-2-HH.0, Italy; CHEP and NRF under Grant No. NRF-2018R1A6A1A06024970 at Kyungpook National University, Korea; the Consejo Nacional de Ciencia y Tecnologia and UNAM, Mexico; NWO under Grant No. 680-1-004, Netherlands; FCT under Grant No. CERN/FIS-PAR/0013/2019, Portugal; the Ministry of Science and Higher Education under Project No. 0723-2020-0040, Russia; CIEMAT, IAC, CDTI, and SEIDI-MINECO under Grants No. PID2019-107988 GB-C21/C22, No. CEX2019-000920-S, and No. MDM-2015-0509, Spain; the Swiss National Science Foundation (SNSF), federal and cantonal authorities, and the Fondation Dr. Manfred Steuer, Switzerland; Academia Sinica and the Ministry of Science and Technology (MOST) under Grants No. 107-2119-M-006-015-MY3, No. 109-2112-M-001-029, and No. CDA-105-M06, former Presidents of Academia Sinica Yuan-Tseh Lee and Chi-Huey Wong and former Ministers of MOST Maw-Kuen Wu and LuoChuan Lee, Taiwan; the Turkish Energy, Nuclear and Mineral Research Agency (TENMAK) under Grant No. 2020TAEK(CERN)A5.H1.F5-26, Turkey; and NSF Grants No. 1455202 and No. 1551980, Wyle Laboratories Grant No. 2014/T72497, and NASA NESSF Grant No. HELIO15F-0005, USA.We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62×106 iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155±0.006. This shows that unexpectedly Fe and He, C, and O belong to the same class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class.openAguilar M.; Cavasonza L.A.; Allen M.S.; Alpat B.; Ambrosi G.; Arruda L.; Attig N.; Barao F.; Barrin L.; Bartoloni A.; Basegmez-Du Pree S.; Battiston R.; Behlmann M.; Beischer B.; Berdugo J.; Bertucci B.; Bindi V.; De Boer W.; Bollweg K.; Borgia B.; Boschini M.J.; Bourquin M.; Bueno E.F.; Burger J.; Burger W.J.; Burmeister S.; Cai X.D.; Capell M.; Casaus J.; Castellini G.; Cervelli F.; Chang Y.H.; Chen G.M.; Chen G.R.; Chen H.S.; Chen Y.; Cheng L.; Chou H.Y.; Chouridou S.; Choutko V.; Chung C.H.; Clark C.; Coignet G.; Consolandi C.; Contin A.; Corti C.; Cui Z.; Dadzie K.; Delgado C.; Della Torre S.; Demirkoz M.B.; Derome L.; Di Falco S.; Di Felice V.; Diaz C.; Dimiccoli F.; Von Doetinchem P.; Dong F.; Donnini F.; Duranti M.; Egorov A.; Eline A.; Feng J.; Fiandrini E.; Fisher P.; Formato V.; Freeman C.; Galaktionov Y.; Gamez C.; Garcia-Lopez R.J.; Gargiulo C.; Gast H.; Gervasi M.; Giovacchini F.; Gomez-Coral D.M.; Gong J.; Goy C.; Grabski V.; Grandi D.; Graziani M.; Haino S.; Han K.C.; Hashmani R.K.; He Z.H.; Heber B.; Hsieh T.H.; Hu J.Y.; Incagli M.; Jang W.Y.; Jia Y.; Jinchi H.; Kanishev K.; Khiali B.; Kim G.N.; Kirn T.; Konyushikhin M.; Kounina O.; Kounine A.; Koutsenko V.; Kuhlman A.; Kulemzin A.; La Vacca G.; Laudi E.; Laurenti G.; Lazzizzera I.; Lebedev A.; Lee H.T.; Lee S.C.; Li J.Q.; Li M.; Li Q.; Li S.; Li J.H.; Li Z.H.; Liang J.; Light C.; Lin C.H.; Lippert T.; Liu J.H.; Liu Z.; Lu S.Q.; Lu Y.S.; Luebelsmeyer K.; Luo J.Z.; Luo X.; Lyu S.S.; Machate F.; Mana C.; Marin J.; Marquardt J.; Martin T.; Martinez G.; Masi N.; Maurin D.; Menchaca-Rocha A.; Meng Q.; Mikhailov V.V.; Mo D.C.; Molero M.; Mott P.; Mussolin L.; Negrete J.; Nikonov N.; Nozzoli F.; Oliva A.; Orcinha M.; Palermo M.; Palmonari F.; Paniccia M.; Pashnin A.; Pauluzzi M.; Pensotti S.; Phan H.D.; Piandani R.; Plyaskin V.; Poluianov S.; Qin X.; Qu Z.Y.; Quadrani L.; Rancoita P.G.; Rapin D.; Conde A.R.; Robyn E.; Rosier-Lees S.; Rozhkov A.; Rozza D.; Sagdeev R.; Schael S.; Von Dratzig A.S.; Schwering G.; Seo E.S.; Shakfa Z.; Shan B.S.; Siedenburg T.; Solano C.; Song J.W.; Song X.J.; Sonnabend R.; Strigari L.; Su T.; Sun Q.; Sun Z.T.; Tacconi M.; Tang X.W.; Tang Z.C.; Tian J.; Ting S.C.C.; Ting S.M.; Tomassetti N.; Torsti J.; Tuysuz C.; Urban T.; Usoskin I.; Vagelli V.; Vainio R.; Valencia-Otero M.; Valente E.; Valtonen E.; Vazquez Acosta M.; Vecchi M.; Velasco M.; Vialle J.P.; Wang C.X.; Wang L.; Wang L.Q.; Wang N.H.; Wang Q.L.; Wang S.; Wang X.; Wang Y.; Wang Z.M.; Wei J.; Weng Z.L.; Wu H.; Xiong R.Q.; Xu W.; Yan Q.; Yang Y.; Yashin I.I.; Yi H.; Yu Y.M.; Yu Z.Q.; Zannoni M.; Zhang C.; Zhang F.; Zhang F.Z.; Zhang J.H.; Zhang Z.; Zhao F.; Zheng C.; Zheng Z.M.; Zhuang H.L.; Zhukov V.; Zichichi A.; Zimmermann N.; Zuccon P.Aguilar M.; Cavasonza L.A.; Allen M.S.; Alpat B.; Ambrosi G.; Arruda L.; Attig N.; Barao F.; Barrin L.; Bartoloni A.; Basegmez-Du Pree S.; Battiston R.; Behlmann M.; Beischer B.; Berdugo J.; Bertucci B.; Bindi V.; De Boer W.; Bollweg K.; Borgia B.; Boschini M.J.; Bourquin M.; Bueno E.F.; Burger J.; Burger W.J.; Burmeister S.; Cai X.D.; Capell M.; Casaus J.; Castellini G.; Cervelli F.; Chang Y.H.; Chen G.M.; Chen G.R.; Chen H.S.; Chen Y.; Cheng L.; Chou H.Y.; Chouridou S.; Choutko V.; Chung C.H.; Clark C.; Coignet G.; Consolandi C.; Contin A.; Corti C.; Cui Z.; Dadzie K.; Delgado C.; Della Torre S.; Demirkoz M.B.; Derome L.; Di Falco S.; Di Felice V.; Diaz C.; Dimiccoli F.; Von Doetinchem P.; Dong F.; Donnini F.; Duranti M.; Egorov A.; Eline A.; Feng J.; Fiandrini E.; Fisher P.; Formato V.; Freeman C.; Galaktionov Y.; Gamez C.; Garcia-Lopez R.J.; Gargiulo C.; Gast H.; Gervasi M.; Giovacchini F.; Gomez-Coral D.M.; Gong J.; Goy C.; Grabski V.; Grandi D.; Graziani M.; Haino S.; Han K.C.; Hashmani R.K.; He Z.H.; Heber B.; Hsieh T.H.; Hu J.Y.; Incagli M.; Jang W.Y.; Jia Y.; Jinchi H.; Kanishev K.; Khiali B.; Kim G.N.; Kirn T.; Konyushikhin M.; Kounina O.; Kounine A.; Koutsenko V.; Kuhlman A.; Kulemzin A.; La Vacca G.; Laudi E.; Laurenti G.; Lazzizzera I.; Lebedev A.; Lee H.T.; Lee S.C.; Li J.Q.; Li M.; Li Q.; Li S.; Li J.H.; Li Z.H.; Liang J.; Light C.; Lin C.H.; Lippert T.; Liu J.H.; Liu Z.; Lu S.Q.; Lu Y.S.; Luebelsmeyer K.; Luo J.Z.; Luo X.; Lyu S.S.; Machate F.; Mana C.; Marin J.; Marquardt J.; Martin T.; Martinez G.; Masi N.; Maurin D.; Menchaca-Rocha A.; Meng Q.; Mikhailov V.V.; Mo D.C.; Molero M.; Mott P.; Mussolin L.; Negrete J.; Nikonov N.; Nozzoli F.; Oliva A.; Orcinha M.; Palermo M.; Palmonari F.; Paniccia M.; Pashnin A.; Pauluzzi M.; Pensotti S.; Phan H.D.; Piandani R.; Plyaskin V.; Poluianov S.; Qin X.; Qu Z.Y.; Quadrani L.; Rancoita P.G.; Rapin D.; Conde A.R.; Robyn E.; Rosier-Lees S.; Rozhkov A.; Rozza D.; Sagdeev R.; Schael S.; Von Dratzig A.S.; Schwering G.; Seo E.S.; Shakfa Z.; Shan B.S.; Siedenburg T.; Solano C.; Song J.W.; Song X.J.; Sonnabend R.; Strigari L.; Su T.; Sun Q.; Sun Z.T.; Tacconi M.; Tang X.W.; Tang Z.C.; Tian J.; Ting S.C.C.; Ting S.M.; Tomassetti N.; Torsti J.; Tuysuz C.; Urban T.; Usoskin I.; Vagelli V.; Vainio R.; Valencia-Otero M.; Valente E.; Valtonen E.; Vazquez Acosta M.; Vecchi M.; Velasco M.; Vialle J.P.; Wang C.X.; Wang L.; Wang L.Q.; Wang N.H.; Wang Q.L.; Wang S.; Wang X.; Wang Y.; Wang Z.M.; Wei J.; Weng Z.L.; Wu H.; Xiong R.Q.; Xu W.; Yan Q.; Yang Y.; Yashin I.I.; Yi H.; Yu Y.M.; Yu Z.Q.; Zannoni M.; Zhang C.; Zhang F.; Zhang F.Z.; Zhang J.H.; Zhang Z.; Zhao F.; Zheng C.; Zheng Z.M.; Zhuang H.L.; Zhukov V.; Zichichi A.; Zimmermann N.; Zuccon P
One step electrodeposition of Ag-decorated ZnO nanowires
The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-016-3476-0.A new route for synthesizing Ag-decorated ZnO nanowires (NWs) on conductive glass substrates using a one-step electrodeposition technique is described here. The structural, optical, and photoelectrochemical properties of Ag-decorated ZnO nanowires were studied in detail using techniques such X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible spectroscopy, photoluminescence, and photoelectrochemical measurements. Both pure and Ag-decorated ZnO nanowires were found to crystallize in the wurtzite structure, irrespective of their Ag contents. Increasing the Ag content from pure ZnO NWs to 3% Ag ZnO NWs decreases the photoluminescence intensity, shifts the optical band gap to the red, and increases the photocurrent up to threefold. This behavior was attributed to the surface plasmon resonance effect induced by the Ag nanoparticles, which inhibits charge recombination and improves charge transport on the ZnO surface.B.S. acknowledges the Nanomaterials and Systems Laboratory for Renewable Energies, Research and Technology Centre of Energy Technoparc Borj Cedria for financial support. This work was supported by the Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and the Generalitat Valenciana (Prometeus 2014/044).Slimi, B.; Ben Assaker, I.; Kriaa, A.; Marí, B.; Chtourou, R. (2017). One step electrodeposition of Ag-decorated ZnO nanowires. Journal of Solid State Electrochemistry. 21(5):1253-1261. https://doi.org/10.1007/s10008-016-3476-0S12531261215Morrison SR, Freund T (1967) J Chem Phys 47:1543–1551Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83:2104–2111Look DC, Reynolds DC, Hemsky JW, Jones RL, Sizelove JR (1999) J Appl Phys Lett 75:811–813Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Nano Lett 4:1247–1252Chang PC, Fan ZY, Chien CJ, Stichtenoth D, Ronning C, Lu JG (2006) Appl Phys Lett 89:133113–133116Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102–105Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:126501–126530Thomas MA, Sun WW, Cui JB (2012) J Phys Chem C 116:6383–6391Yin X, Que W, Fei D, Shen F, Guo Q (2012) J Alloys Compd 524:13–21Tan ST, AlZayed NS, Lakshminarayana G, Naumar F, Umar AA, Oyama M, Myronchuk G, Kityk IV (2014) Phys E 61:23–27Wen LB, Huang YW, Li SB (1987) J Appl Phys 62:2295–2297Gurav KV, Fulari VJ, Patil UM, Lokhande CD, Joo OS (2010) Appl Surf Sci 256:2680–2685Kong XY, Wang ZL (2003) Nano Lett 3:1625–1631Kim K, Song YW, Chang S, Kim IH, Kim S, Lee SY (2009) Thin Solid Films 518:1190–1193Guo Z, Zhao D, Liu Y, Shen D, Zhang J, Li B (2008) Appl Phys Lett 93:163501–163504Hatch SM, Briscoe J, Dunn S (2013) Adv Mater 25:867–871Tarwal NL, Patil PS (2011) Electrochim Acta 56:6510–6516Fu M, Li S, Yao J, Wu H, He D, Wang Y (2013) J Porous Mater 20:1485–1489Haldar KK, Sen T, Patra A (2008) J Phys Chem C 112:11650–116506Xie J, Wu Q (2010) Mater Lett 64:389–392Yuan J, Choo ESG, Tang X, Sheng Y, Ding J, Xue J (2010) Nanotechnology 21:185606–185616Sahu DR, Liu CP, Wang RC, Kuo CL, Huang JL (2012) J Appl Ceram Technol 25:1–25Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479–7485Zhang D, Chava S, Berven C, Lee SK, Devitt R, Katkanant V (2010) Appl Phys A 100:145–150Zhu G, Yang R, Wang S, Wang ZL (2010) Nano Lett 10:3151–3155Mute A, Peres M, Peiris TC, Lourenço AC, Jensen LR, Monteiro T (2010) J Nanosci Nanotechnol 10:2669–2673Wang K, Chen J, Zhou W, Zhang Y, Yan Y, Pern J, Mascarenhas A (2008) Adv Mater 20:3248Pauporté T, Bataille G, Joulaud L, Vermersch FJ (2010) J Phys Chem C 114:194–202Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S, Lu G, Ye J, Bi Y (2013) Nanoscale 5:7552–7557Brayek A, Ghoul M, Souissi A, Ben Assaker I, Lecoq H, Nowak S, Chaguetmi S, Ammar S, Oueslati M, Chtourou R (2014) Mater Lett 129:142–145Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley, New YorkPauporte T, Lupan O, Zhang J, Tugsuz T, Ciofini I, Labat F, Viana B (2015) ACS Appl Mater Interfaces 7:11871–11880Lupan O, Cretu V, Postica V, Ahmadi M, Cuenya RB, Chow L, Tiginyanu I, Viana B, Pauporté T, Adelung R (2016) Sensors Actuators B 223:893–903Ghoul M, Braiek B, Brayek A, Ben Assaker I, Khalifa N, Ben Naceur J, Souissi A, Lamouchi A, Ammar S, Chtourou R (2015) J Alloys Compd 647:660–664Messaoudi O, Makhlouf H, Souissi A, Ben Assaker I, Amiri G, Bardaoui A, Oueslati M, Bechelany M, Chtourou R (2015) Appl Surf Sci 343:148–152Song J, Lim S (2007) J Phys Chem C 111:596–600Wang H, Baek S, Song J, Lee J, Lim S (2008) Nanotechnology 19:075607–075613Hsu MH, Chang CJ (2014) J Hazard Mater 278:444–453Ibănescu M, Muşat V, Textor T, Badilita V, Mahltig B (2014) J Alloys Compd 610:244–249Joshi MK, Pant HR, Kim HJ, Kim JH, Kim CS (2014) Colloids Surf A 446:102–108Zhu H, Yang D, Zhang H (2006) Mater Lett 60:2686–2689Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley, Reading, pp 162–165Chai B, Wang X, Cheng S, Zhou H, Zhang F (2014) Ceram Int 40:429–435Su L, Qin N (2015) Ceram Int 41:2673–2679Shanmuganathan G, Shameem IB, Krishnan S, Ranganathan B (2013) J Alloys Compd 562:187–193Tauc T, Grigorvici R, Vancu A (1996) Physical Status Solidi B 15:627–637Zhang XL, Zhao JL, Wang SG, Dai HT, Sun XW (2013) Proc SPIE 8641:86411NZhou XD, Xiao XH, Xu JX, Cai GX, Ren F, Jiang CZ (2011) Europhys Lett 93:57009–57015Zhu J, Wang Y, Huang L (2005) Mater Chem Phys 93:383–387Chalana SR, Ganesan V, Pillai VPM (2015) Appl Phys Adv 5:107207–107224Udom I, Zhang Y, Ram MK, Stefanakos EK, Hepp AF, Elzein R, Schlaf R, Goswami DY (2014) Thin Solid Films 564:258–263Nour ES, Echresh A, Liu X, Broitman E, Willander M, Nur O (2015) Appl Phys Adv 5:077163–077173Sun T, Qiu J, Liang C (2008) J Phys Chem C 112:715–721Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS (2012) J Phys Chem 116:16182–16190Manjón FJ, Mollar M, Hernández-Fenollosa MA, Marí B, Lauck R, Cardona M (2003) Solid State Commun 128:35–39Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P (2015) Nanoscale 7:3396–3403Karyaoui M, Mhamdi A, Kaouach H, Labidi A, Boukhachem A, Boubaker K, Amlouk M, Chtourou R (2015) Mater Sci Semicond Process 30:255–26
Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution
[EN]
In this paper, we propose a benchmark problem for the challengers aiming to energy efficiency control of hybrid electric vehicles (HEVs) on a road with slope. Moreover, it is assumed that the targeted HEVs are in the connected environment with the obtainment of real-time information of vehicle-to-everything (V2X), including geographic information, vehicle-to-infrastructure (V2I) information and vehicle-to-vehicle (V2V) information. The provided simulator consists of an industrial-level HEV model and a traffic scenario database obtained through a commercial traffic simulator, where the running route is generated based on real-world data with slope and intersection position. The benchmark problem to be solved is the HEVs powertrain control using traffic information to fulfill fuel economy improvement while satisfying the constraints of driving safety and travel time. To show the HEV powertrain characteristics, a case study is given with the speed planning and energy management strategy.Xu, F.; Tsunogawa, H.; Kako, J.; Hu, X.; Eben Li, S.; Shen, T.; Eriksson, L.... (2022). Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution. Control Theory and Technology. 20:145-160. https://doi.org/10.1007/s11768-022-00086-y14516020Zhou, Q., Zhao, D., Shuai, B., Li, Y., Williams, H., & Xu, H. (2021). Knowledge implementation and transfer with an adaptive learning network for real-time power management of the plug-in hybrid vehicle. IEEE Transactions on Neural Networks and Learning Systems, 32(12), 5298–5308. https://doi.org/10.1109/TNNLS.2021.3093429Xu, F., & Shen, T. (2021). Decentralized optimal merging control with optimization of energy consumption for connected hybrid electric vehicles. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2021.3054903Zhuang, W., Li, S., Zhang, X., et al. (2020). A survey of powertrain configuration studies on hybrid electric vehicles. Applied Energy, 262, 114553.Wang, S., Chen, K., Zhao, F., & Hao, H. (2019). Technology pathways for complying with corporate average fuel consumption regulations up to 2030: A case study of China. Applied Energy, 241, 257–277.Zhang, J., Shen, T., & Kako, J. (2020). Short-term optimal energy management of power-split hybrid electric vehicles under velocity tracking control. IEEE Transactions on Vehicular Technology, 69(1), 182–193.Asaei, B. (2010). A fuzzy-genetic algorithm approach for finding a new HEV control strategy idea. 1st Power Electronic and Drive Systems and Technologies Conference, pp. 224 – 229. Tehran, Iran.Wu, J., Zhang, C. H., & Cui, N. X. (2008). PSO algorithm-based parameter optimization for HEV powertrain and its control strategy. International Journal of Automotive Technology, 9(1), 53–59.Lin, C. C., Peng, H., Grizzle, J. W., & Kang, J.-M. (2003). Power management strategy for a parallel hybrid electric truck. IEEE Transactions on Control Systems Technology, 11(6), 839–849.Luján, J. M., Guardiola, C., Pla, B., & Reig, A. (2018). Analytical optimal solution to the energy management problem in series hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 67(8): 6803 – 6813.Larsson, V., Johannesson, L., & Egardt, B. (2014). Analytic solutions to the dynamic programming subproblem in hybrid vehicle energy management. IEEE Transactions on Vehicular Technology, 64(4), 1458–1467.Serrao, L., Onori, S., & Rizzoni, G. (2009). ECMS as a realization of Pontryagin’s minimum principle for HEV control. American Control Conference, pp. 3964-3969. St. Louis, MO, USA.Kim, N., Cha, S., & Peng, H. (2011). Optimal equivalent fuel consumption for hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 20(3), 817–825.Rezaei, A., Burl, J. B., Solouk, A., Zhou, B., et al. (2017). Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles. Applied Energy, 208, 655–665.Xie, S., Hu, X., Qi, S., & Lang, K. (2018). An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 163, 837–848.Zhang, J., & Shen, T. (2016). Real-time fuel economy optimization with nonlinear MPC for PHEVs. IEEE Transactions on Control Systems Technology, 24(6), 2167–2175.Sciarretta, A., Serrao, L., Dewangan, P. C., et al. (2014). A control benchmark on the energy management of a plug-in hybrid electric vehicle. Control Engineering Practice, 29, 287–298.Lars, E. (2019). An overview of various control benchmarks with a focus on automotive control. Control Theory and Technology, 17(2), 121–130.Moura, S. J., Fathy, H. K., Callaway, D. S., & Stein, J. L. (2010). A stochastic optimal control approach for power management in plug-in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 19(3), 545–555.Sun, C., Hu, X., Moura, S. J., & Sun, F. (2014). Velocity predictors for predictive energy management in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 23(3), 1197–1204.Xiang, C., Ding, F., Wang, W., & He, W. (2017). Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control. Applied Energy, 189, 640–653.Sun, C., Sun, F., & He, H. (2017). Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles. Applied Energy, 185, 1644–1653.Zhang, F., Hu, X., Langari, R., & Cao, D. (2019). Energy management strategies of connected HEVs and PHEVs: Recent progress and outlook. Progress in Energy and Combustion Science, 73, 235–256.Yang, C., Zha, M., Wang, W., Liu, K., & Xiang, C. (2020). Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. IET Intelligent Transport Systems, 14(7), 702–711. https://doi.org/10.1049/iet-its.2019.0606Zhang, J., Xu, F., Zhang, Y., & Shen, T. (2019). ELM-based driver torque demand prediction and real-time optimal energy management strategy for HEVs. Neural Computing and Applications, 32: 14411C14429.Zhang, B., Zhang, J., Xu, F., & Shen, T. (2020). Optimal control of power-split hybrid electric powertrains with minimization of energy consumption. Applied Energy, 266, 114873.Zhang, F., Xi, J., & Langari, R. (2016). Real-time energy management strategy based on velocity forecasts using V2V and V2I communications. IEEE Transactions on Intelligent Transportation Systems, 18(2), 416–430.Li, J., Zhou, Q., He, Y., et al. (2019). Dual-loop online intelligent programming for driver-oriented predict energy management of plug-in hybrid electric vehicles. Applied Energy, 253, 113617.Qi, X., Wu, G., Hao, P., Boriboonsomsin, K., & Barth, M. J. (2017). Integrated-connected eco-driving system for PHEVs with co-optimization of vehicle dynamics and powertrain operations. IEEE Transactions on Vehicular Technology, 2(1), 2–13.Uebel, S., Murgovski, N., Bker, B., & Sjberg, J. (2019). A two-level mpc for energy management including velocity control of hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 68(6): 5494–5505.Chen, B., Evangelou, S. A., & Lot, R. (2019). Hybrid electric vehicle two-step fuel efficiency optimization with decoupled energy management and speed control. IEEE Transactions on Vehicular Technology, 68(12), 11492–11504.Wang, S., & Lin, X. (2020). Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios. Applied Energy, 271, 115233.Zhang, J., & Xu, F. (2020). Real-time optimization of energy consumption under adaptive cruise control for connected HEVs. Control Theory and Technology, 18(2), 182–192.Fu, Q., Xu, F., Shen, T., & Takai, K. (2020). Distributed optimal energy consumption control of HEVs under MFG-based speed consensus. Control Theory and Technology, 18(2), 193–203.Chen, B., Evangelou, S. A., & Lot, R. (2019). Series hybrid electric vehicle simultaneous energy management and driving speed optimization. IEEE/ASME Transactions on Mechatronics, 24(6), 2756–2767.Hu, Q., Amini, M. R., Feng, Y., Yang, Z., Wang, H., Kolmanovsky, I., & Seeds, J. B. (2020). Engine and aftertreatment co-optimization of connected HEVs via multi-range vehicle speed planning and prediction. SAE Technical Paper, -01-0590.Xu, F., & Shen, T. (2020). Look-ahead prediction-based real-time optimal energy management for connected HEVs. IEEE Transactions on Vehicular Technology, 69(3), 2537–2551.Xu, F., & Shen, T. (2019). MPC-based optimal control for diesel engine coupled with lean NOx trap system. SICE Journal of Control, Measurement, and System Integration, 12(3), 94–101
Preparation of Sewage Sludge¿Based Activated Carbon for Hydrogen Sulphide Removal
[EN] The circular economy concept boosts the use of wastes as secondary raw materials in the EU renewable and sustainable framework. In wastewater treatment plants (WWTP), sludge is one of the most important wastes, and its management is being widely discussed in the last years. In this work, sewage sludge from WWTP was employed as raw material for producing activated carbon (AC) by physical-chemical activation. The prepared AC was subsequently tested for hydrogen sulphide removal in view of its further use in deodorization in a WWTP. The effects of the activation temperature and the chemical agent used (NaOH and KOH) during the activation process were studied. On the one hand, the characteristics of each AC fabricated were analysed in terms of BET (Brunauer-Emmett-Teller) surface area, pore and micropore volume, pore diameter, surface morphology and zeta potential. On the other hand, BET isotherms were also calculated. Finally, both the prepared AC and a commercial AC were tested for H2S removal from a gas stream. Results demonstrated that the optimum physical and chemical activation temperature was 600 degrees C and 1000 degrees C, respectively, and the best activated agent tested was KOH. The prepared AC showed excellent properties (specific surface area around 300 m(2)/g) for H2S removal, even better efficiencies than those achieved by the tested commercial AC.Lujan Facundo, MJ.; Iborra-Clar, MI.; Mendoza Roca, JA.; Alcaina-Miranda, MI.; Maciá, AM.; Lardin, C.; Pastor, L.... (2020). Preparation of Sewage Sludge¿Based Activated Carbon for Hydrogen Sulphide Removal. Water Air & Soil Pollution. 231(4):1-12. https://doi.org/10.1007/s11270-020-04518-wS1122314Andrade, S. N., Veloso, C. M., Fontan, R. C. I., Bonomo, R. C. F., Santos, L. S., Brito, M. J. P., & Diniz, G. A. (2018). Chemical-activated carbon from coconut (Cocos nucifera) endocarp waste and its application in the adsorption of beta lactoglobulin protein. Revista Mexicana de Ingenieria Quimica, 17(2), 463–475.APHA, AWWA, WEF. (2005). Standard methods for the examination of water and wastewater. Washington.Arami-Niya, A., Daud, W. M. A. W., & Mjalli, F. S. (2010). Using granular activated carbon prepared from oil palm shell by ZnCl 2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 89, 197–203.Aslam, Z., Shawabkeh, R., Hussein, I., Al-Baghli, N., & Eic, M. (2015). Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream. Applied Surface Science, 327, 107–115.Carrete, J., García, M., Rodríguez, J. R., Cabeza, O., & Varela, L. M. (2011). Theoretical model for moisture adsorption on ionic liquids: a modified Brunauer–Emmet–Teller isotherm approach. Fluid Phase Equilibria, 301, 118–122.Chen, C. L., Park, S. W., Su, J. F., Yu, Y. H., Heo, J. E., Kim, K. D., & Huang, C. P. (2019). The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats). Science of the Total Environment, 693, 133605.Cheng, S., Zhang, L., Ma, A., Xia, H., Peng, J., Li, C., & Shu, J. (2018). Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. Journal of Environmental Sciences, 65, 92–102.Chiavola, A. (2013). Textiles. Water Environment Research, 85, 1581–1600.De Falco, G., Montagnaro, F., Balsamo, M., Erto, A., Deorsola, F. A., Lisi, L., & Cimino, S. (2018). Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H 2 S at room temperature. Microporous and Mesoporous Materials, 257, 135–146.Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85, 833–846.Donald, J., Ohtsuka, Y., & Xu, C. C. (2011). Effects of activation agents and intrinsic minerals on pore development in activated carbons derived from a Canadian peat. Materials Letters, 65, 744–747.dos Reis, G. S., Mahbub, M. K. B., Wilhelm, M., Lima, E. C., Sampaio, C. H., Saucier, C., & Dias, S. L. P. (2016). Activated carbon from sewage sludge for removal of sodium diclofenac and nimesulide from aqueous solutions. Korean Journal of Chemical Engineering, 33(11), 3149–3161.Hadi, P., Xu, M., Ning, C., Lin, C. S. K., & McKay, G. (2015). A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chemical Engineering Journal, 260, 895–906.Kacan, E. (2016). Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. Journal of Environmental Management, 166, 116–123.Kazak, O., Eker, Y. R., Bingol, H., & Tor, A. (2018). Preparation of chemically-activated high surface area carbon from waste vinasse and its efficiency as adsorbent material. Journal of Molecular Liquids, 272, 189–197.Kimura, K., Honoki, D., & Sato, T. (2017). Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: up-concentration of organic matter for efficient energy recovery. Separation and Purification Technology, 181, 37–43.Kuroda, S., Nagaishi, T., Kameyama, M., Koido, K., Seo, Y., & Dowaki, K. (2018). Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: Physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation. International Journal of Hydrogen Energy, 43, 16573–16588.Ladavos, A. K., Katsoulidis, A. P., Iosifidis, A., Triantafyllidis, K. S., Pinnavaia, T. J., & Pomonis, P. J. (2012). The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids. Microporous and Mesoporous Materials, 151, 126–133.Lapham, D. P., & Lapham, J. L. (2017). Gas adsorption on commercial magnesium stearate: effects of degassing conditions on nitrogen BET surface area and isotherm characteristics. International Journal of Pharmaceutics, 530, 364–376.Li, W. H., Yue, Q. Y., Gao, B. Y., Ma, Z. H., Li, Y. J., & Zhao, H. X. (2011). Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chemical Engineering Journal, 171, 320–327.Li, F., Lei, T., Zhang, Y., Wei, J., & Yang, Y. (2015). Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide under room temperature. Frontiers of Environmental Science & Engineering, 9(2), 190–196.Li, J., Xing, X., Li, J., Shi, M., Lin, A., Xu, C., Zheng, J., & Li, R. (2018). Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environmental Pollution, 234, 677–683.Li, D., Zhou, J., Wang, Y., Tian, Y., Wei, L., Zhang, Z., Qiao, Y., & Li, J. (2019). Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel, 238, 232–239.Li, Y. H., Chang, F. M., Huang, B., Song, Y. P., Zhao, H. Y., & Wang, K. J. (2020). Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel, 266, 117053.Mininni, G., Blanch, A. R., Lucena, F., & Berselli, S. (2015). EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environmental Science and Pollution Research, 22, 7361–7374.Pandiarajan, A., Kamaraj, R., Vasudevan, S., & Vasudevan, S. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329–341.Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of the available media and approaches for phosphorus recovery from wastewater. Water, Air, and Soil Pollution, 229.Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L., Santos Júnior, O. O., Visentainer, J. V., & Almeida, V. C. (2016). NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal, 288, 778–788.Ping, Q., Zheng, M., Dai, X., & Li, Y. (2020). Metagenomic characterization of the enhanced performance of anaerobic fermentation of waste activated sludge with CaO2 addition at ambient temperature: fatty acid biosynthesis metabolic pathway and CAZymes. Water Research, 170, 115309.Qiu, M., & Huang, C. (2015). Removal of dyes from aqueous solution by activated carbon from sewage sludge of the municipal wastewater treatment plant. Desalination and Water Treatment, 53, 3641–3648.Rawal, S., Joshi, B., & Kumar, Y. (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. The Journal of Energy Storage, 20, 418–426.Satya Sai, P. M., & Krishnaiah, K. (2005). Development of the pore-size distribution in activated carbon produced from coconut shell char in a fluidized-bed reactor. Industrial and Engineering Chemistry Research, 44, 51–60.Shen, F., Liu, J., Zhang, Z., Dong, Y., & Gu, C. (2018). Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Processing Technology, 171, 258–264.Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57.Sulaiman, N. S., Hashim, R., Mohamad Amini, M. H., Danish, M., & Sulaiman, O. (2018). Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield. Journal of Cleaner Production, 198, 1422–1430.Sun, K., Huang, Q., Chi, Y., & Yan, J. (2018). Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil. Waste Management, 81, 128–137.Tian, D., Xu, Z., Zhang, D., Chen, W., Cai, J., Deng, H., Sun, Z., & Zhou, Y. (2019). Micro–mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T. Journal of Solid State Chemistry, 269, 580–587.Wang, X., Zhu, N., & Yin, B. (2008). Preparation of sludge-based activated carbon and its application in dye wastewater treatment. Journal of Hazardous Materials, 153, 22–27.Wang, N., Zhang, W., Cao, B., Yang, P., Cui, F., & Wang, D. (2018). Advanced anaerobic digested sludge dewaterability enhancement using sludge based activated carbon (SBAC) in combination with organic polymers. Chemical Engineering Journal, 350, 660–672.Wei Yu, K. S. (2018). Modeling gas adsorption in Marcellus shale using Langmuir and BET isotherms. In Shale gas and tight oil reservoir simulation (pp. 129–154).Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Chang, S. W., Nguyen, D. D., Liang, H., & Wang, J. (2018). A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresource Technology, 268, 749–758.Zhang, J. P., Sun, Y., Woo, M. W., Zhang, L., & Xu, K. Z. (2016). Preparation of steam activated carbon from black liquor by flue gas precipitation and its performance in hydrogen sulfide removal: experimental and simulation works. Revista Mexicana de Urología, 76, 395–404.Zhang, Y., Song, X., Xu, Y., Shen, H., & Kong, X. (2019). Utilization of wheat bran for producing activated carbon with high speci fi c surface area via NaOH activation using industrial furnace. Journal of Cleaner Production, 210, 366–375.Zhu, J., Li, Y. H., Xu, L., & Liu, Z. Y. (2018). Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents. Ecotoxicology and Environmental Safety, 165, 115–125
Proceedings of the International Conference on Manufacturing Automation, April 28-30, 1997, Hong Kong
Includes bibliographical references and index.Organized by the Dept. of Mechanical Engineering, University of Hong Kong.published_or_final_versionv.2 Computer-aided mechanism design for constrained function generation in a robotic automation cell Liang, Zhongming(Wilson) Liang, Zhongming(Wilson) 709v.1 A sophisticated assembly planning system for flexible robot-based manufacturing Mosemann, H. Mosemann, H. Rohrdanz, F. Rohrdanz, F. Wahl, F.M. Wahl, F.M. 329v.1 State space modelleing of a class of discrete event systems for robotic manufacturing control Holm, Hans Holm, Hans 335v.2 A simulation model for IC engine turbocharger- exhaust manifold design Yang, Jingbin Yang, Jingbin Campbell, Thomas Campbell, Thomas 703v.2 Modelling the human body for ergonomic CAD Case, K. Case, K. Porter, J.M. Porter, J.M. Xiao, D. Xiao, D. Acar, B.S. Acar, B.S. 697v.1 Build integrated CAD/CAM system based on software reverse engineering Lu, Yiping Lu, Yiping Lin, Jianping Lin, Jianping 170v.1 Assembly modeling of product information based on self-organization Tan, Jianrong Tan, Jianrong Wei, Xiuting Wei, Xiuting Huang, Chao Huang, Chao 158v.2 Manufacturing and product development in the USA, in particular in the Los Angles basin and the strategic training and implementation of high manufacturing technology Grote, Karl H. Grote, Karl H. Walo, Michael L. Walo, Michael L. Miller, Jeffrey L. Miller, Jeffrey L. 868v.1 Step based semantic product model Luo, Yan Luo, Yan Zhou, Xinjian Zhou, Xinjian Mo, Ming Mo, Ming 152v.2 Optimization ideologies and approaches in CIMs development and implementation Xiong, M.H. Xiong, M.H. Han, Z.Y. Han, Z.Y. Zhong, Y.F. Zhong, Y.F. Zhou, J. Zhou, J. 863v.1 CAPP systems in CIM and traditional production environment Huang, N.K. Huang, N.K. Cui, N. Cui, N. Zhang, Z.M. Zhang, Z.M. Xu, J.X. Xu, J.X. Fan, Q.J. Fan, Q.J. 89v.2 Development of a CAD/CAM system for progressive dies: the system technological wheel die structure design Wang, Joshua F. Wang, Joshua F. Shi, C. Shi, C. Xiao, X. Xiao, X. Li, J. Li, J. 857v.1 Shape glass cutting direct drive robot Chen, Hui- tang Chen, Hui-tang Jiang, Ping Jiang, Ping Wang, Yue- juan Wang, Yue-juan 146v.2 Constraint support for engineering databases Lau, Ka-lok Lau, Ka-lok Goh, Angela Goh, Angela 851v.1 Payload alignment control using task moment feedback for multi-robot assembly operation Laliberte, M. Laliberte, M. Mills, J.K. Mills, J.K. 140v.1 Force control using virtual trajectory generation Fielding, T. Fielding, T. Mills, J.K. Mills, J.K. 134v.2 A simulation based oscillatory sequencing algorithm for layout planning of FMS Subrahmanyam, V.H.R. Subrahmanyam, V.H.R. Babu, N. Ramesh Babu, N. Ramesh 845v.1 An on-line calibration methodology for robot relative positioning inaccuracy Lu, Tien-fu Lu, Tien-fu Lin, Grier C.I. Lin, Grier C.I. 128v.2 Development of an intelligent enterprise information system Ng, Johnny K.C. Ng, Johnny K.C. Ip, W.H. Ip, W.H. 838v.2 Multi-modelling: a help to rapid product development Gardan, Yvon Gardan, Yvon 623v.2 Automatic machine setting for injection molding process Tan, K.H. Tan, K.H. Yuen, M.M.F. Yuen, M.M.F. 832v.2 The role of knowledge rich machine controllers within flexible manufacturing Gindy, N.N. Gindy, N.N. Pickett, N.J. Pickett, N.J. Owen, S. Owen, S. 826v.2 New curves and surfaces comparing favourably with bezier curves and surfaces in computer-aided geometry design Cao, J.D. Cao, J.D. 1219v.2 Smooth surface interpolation of irregular meshes Wang, Xuefu Wang, Xuefu Cheng, Fuhua(Frank) Cheng, Fuhua(Frank) 1213v.2 Research on a fuzzy control method based on expert system for the cavity of saline production Liu, Dong Liu, Dong Yin, Guofu Yin, Guofu Chen, Jiuqiang Chen, Jiuqiang Hu, Xiaobing Hu, Xiaobing 821v.2 The benefits of coherent exploitation in CSG rendering algorithm Kurdthongmee, W. Kurdthongmee, W. 1207v.2 An optimal expected-time algorithm for voronoi diagram of disjoint polygonal objects Wang, Jia-ye Wang, Jia-ye Wang, Wenping Wang, Wenping Liu, Ding-yuin Liu, Ding-yuin 1201v.2 Neural network CAPP system modeling Chen, Bingkui Chen, Bingkui Wang, Dehua Wang, Dehua Lin, Tangjiao Lin, Tengjiao 1197v.2 A product family approach to assembly process planning for electronics products Fan, L.S. Fan, L.S. Liu, C.K. Liu, C.K. 1191v.2 A toolpath and cutting depth algorithm for rough machining Hu, Y.N. Hu, Y.N. Tse, W.C. Tse, W.C. Chen, Y.H. Chen, Y.H. 1185v.2 A clustering algorithm for automated inspection Ajmal, A. Ajmal, A. Zhang, S.G. Zhang, S.G. 1179v.2 Computer aided assembly planning and process modelling Gao, J.X. Gao, J.X. Ip, A. Ip, A. 1173v.2 Kinematics analysis of general 5-axis NC milling machines and its application to NC machining Wang, L.P. Wang, L.P. Leu, M.C. Leu, M.C. Blackmore, D. Blackmore, D. 1167v.2 Artificial neural networks for performance estimation in wood turning Karri, V. Karri, V. 618v.1 Early stage rapid feedback design system based on rapid prototype technology Lu, Qingping Lu, Qingping Li, Bao Li, Bao Wang, Jianguo Wang, Jianguo Zhu, Jun Zhu, Jun Yan, Yongnian Yan, Yongnian 122v.2 Swept volume approach as an integral part of 5-axis NC machining CAD/CAM systems Wang, L.P. Wang, L.P. Leu, M.C. Leu, M.C. Blackmore, D. Blackmore, D. 1161v.1 Tolerancing, tool adjustment and machining parameter selection problems in multi-pass turning operation Liang, M. Liang, M. Zuo, M. Zuo, M. Yeap, T. Yeap, T. 202v.2 Fuzzy self organizing control for contouring performance improvement of CNC machine tools Cheng, J. John Cheng, J. John Kong, Tom Kong, Tom Yang, Daniel C.H. Yang, Daniel C.H. 1155v.1 Three-valued calculi in the problem of conversion from CSG to boundary models Gorelik, A.G. Gorelik, A.G. 208v.2 A distributed algorithm for the simulation of temperature distribution in metal cutting Lai, C.H. Lai, C.H. Law, S. Law, S. 1149v.2 Designing automated reasoners with efficient algorithms Guan, J.W. Guan, J.W. Bell, D.A. Bell, D.A. 1143v.1 ... refinement of data for rapid prototyping Walton, D.J. Walton, D.J. Yeung, M. Yeung, M. 214v.2 The research on intelligent platform ISPD for industrial simulation process drawing Jia, Y.Y. Jia, Y.Y. Leng, Y.N. Leng, Y.N. 815v.2 Agents and multiagent manufacturing systems: modelling support Szczerbicki, Edward Szczerbicki, Edward 809v.2 Object oriented simulation of relay ladder logic Ferreira, J.A. Ferreira, J.A. Azevedo, J.L. Azevedo, J.L. Estima De Oliveira, J.P. Estima De Oliveira, J.P. 1137v.2 Assembly line balancing using modified genetic algorithm Guo, Y. Guo, Y. Chan, K.C. Chan, K.C. 803v.2 Application of neural-network for effecting a knowledgeable manufacturing system in reaming Mathews, P.G. Mathews, P.G. Shunmugam, M.S. Shunmugam, M.S. 1131v.2 Intelligent decision support system for equipment diagnosis and maintenan4ce management Tu, Yiliu Tu, Yiliu Zhang, Jun Zhang, Jun Yeung, Eddie H.H. Yeung, Eddie H.H. 1125v.1 An efficient approach to manufacturing communications in a CIM environment Ding, Xinquan Ding, Xinquan Gu, Guanqun Gu, Guanqun Wu, Jieyi Wu, Jieyi 83v.2 Intelligent synthesis of multiagent manufacturing systems Szczerbicki, Edward Szczerbicki, Edward 1119v.2 Feature recognition for NC part programming Tuttle, R. Tuttle, R. Little, G. Little, G. Clark, D.E.R. Clark, D.E.R. Corney, J. Corney, J. 797v.2 An application of spline surface interpolation on blending/polishing system for turbine blade Wang, Jia-ye Wang, Jia-ye Lee, Eng-wah Lee, Eng-wah Shi, Cheng-fu Shi, Cheng-fu Liu, Pei-ling Liu, Pei-ling 1114v.2 Backward growing-based geometric reasoning for manufacturing feature recognition Yang, Zhi-xin Yang, Zhi-xin Joneja, Ajay Joneja, Ajay Zhou, Ji Zhou, Ji 791v.2 Multi-view feature modelling for manufacturing applications Wong, T.N. Wong, T.N. Leung, C.B. Leung, C.B. 785v.1 The boolean operation of polygon with holes based on edge recognition Wu, Yunxing Wu, Yunxing Du, Mike Du, Mike Liu, Shiping Liu, Shiping 220v.2 Automatic feature recognition from solid models Wong, T.N. Wong, T.N. Lam, S.M. Lam, S.M. 779v.2 Decision-making system for process planning using a constraint programming approach Galantucci, L.M. Galantucci, L.M. Spina, R. Spina, R. Tricarico, L. Tricarico, L. 773v.2 An object oriented methodology for operation & machine selection of feature based process planning system Reddy, S.V. Bhaskara Reddy, S.V. Bhaskara Krishna, N. Bala Kirshna, N. Bala Shunmugam, M.S. Shunmugam, M.S. Narendran, T.T. Narendran, T.T. 767v.2 Study on flexible automatic inspection system Wang, Y.Z. Wang, Y.Z. Chen, Y.H. Chen, Y.H. 761v.2 Neighborhood concept for efficient nesting of flat patterns Cheng, S.K. Cheng, S.K. Rao, K.P. Rao, K.P. 755v.1 Improvement of the planning quality in highly networked processing industry production by means of simulation and cooperative local control stations Pirron, J. Pirron, J. Arnold, J. Arnold, J. Reisch, O. Reisch, O. 395v.1 Implication of design for inspection Wang, L. Wang, L. Lin, G.C.I. Lin, G.C.I. 225v.1 A neural network approach to parametric design Chen, Y.H. Chen, Y.H. 231v.1 Software prototyping and object-oriented specification as a methodology for customer-oriented development of software systems - an example from the automative industry Mertins, K. Mertins, K. Albrecht, R. Albrecht, R. Beck, S. Beck, S. Bahna, O. Bahna, O. La Pierre, B. La Pierre, B. 389v.1 Element method for 2-D shape transformation Hui, K.C. Hui, K.C. Li, Y.D. Li, Y.D. 237v.1 Interacting with a virtually elastic object Hui, K.C. Hui, K.C. Ma, M.C. Ma, M.C. 243v.2 Influence of tool preparation scheduling onto the performance of machining centres Petuelli, G. Petuelli, G. Mueller, U. Mueller, U. 749v.2 Pocket machining NC program verification based on plane partitioning Daho, O. Ben Ahmed Daho, O. Ben Ahmed Poiraudeau, J.F. Poiraudeau, J.F. Bazzi, M. Bazzi, M. 743v.1 Integration of machines and software packages to achieve computer integrated manufacutring Lau, Henry Lau, Henry Chan, Felix, T.S. Chan, Felix, T.S. Ip, Ralph W.L. Ip, Ralph W.L. 77v.1 On the assemblability of a product Hsu, Hung-yao Hsu, Hung-yao Lin, Grier C.I. Lin, Grier C.I. 383v.1 A tolerance model with surface irregularity consideration Lui, C.K. Lui, C.K. Sze, W.S. Sze, W.S. Tan, S.T. Tan, S.T. 374v.1 Design at a distance Medland, A.J. Medland, A.J. 366v.2 Cutter location data (CLdata) generation for flat tool in multi-axis milling operations Awan, Khalil Aslam Awan, Khalil Aslam 733v.2 A general implementable approach to distributed problem solving system Wei, Baogang Wei, Baogang Qin, Zheng Qin, Zheng Kang, Jichang Kang, Jichang He, Huacan He, Huacan 647v.2 CAM sofeware for ultra-precision aspheric surface using tri-arc interpolation Yang, M.Y. Yang, M.Y. Lee, T.M. Lee, T.M. 727v.2 Selection of optimal milling parameters by genetic algorithm Lau, T.L. Lau, T.L. Yang, Qinghao Yang, Qinghao 721v.2 A new CNC system with sculptured surface interpolation capability Zhou, Yanhong Zhou, Yanhong Zhan, Yong Zhan, Yong Zhou, Ji Zhou, Ji 715v.1 Rapid product development using a RP-centered interactive design process Wu, Hsien-jung Wu, Hsien-jung 306v.1 Automatic mesh generation for simplification of finite element analysis Fukuda, Junko Fukuda, Junko 360v.1 A path planning algorithm for robot manipulators in FMS environment Ma, Yulin Ma, Yulin Wang, Wei Wang, Wei Fu, Yili Fu, Yili 311v.1 Model and sensor based control of industrial robots Madsen, Ole Madsen, Ole Holm, Hans Holm, Hans 317v.1 A formal method to specify at an abstract level robotics-based manufacturing systems Condom, J.M. Condom, J.M. Ouriachi, K. Ouriachi, K. 323v.1 Petri net aided tolerancing for prismatic components Eshwaraiah, P. Eshwaraiah, P. Sarat Babu, A.L. Sarat Babu, A.L. Ravi Raju, K. Ravi Raju, K. Tewari, N.K. Tewari, N.K. 353v.1 Dimension-driven parameterized design of free form shapes Yu, Kai-ming Yu, Kai-ming Zhu, Wei-ming Zhu, Wei-ming 347v.1 Function and behaviour description in intelligent mechanical CAD system Li, C.L. Li, C.L. Tan, S.T. Tan, S.T. Chan, K.W. Chan, K.W. 341v.2 A design support system for basic design of power plant heat-exchanger Zhang, Zhihua Zhang, Zhihua Yamaguchi, Hideyuki Yamaguchi, Hideyuki Nagasawa, Isao Nagasawa, Isao Umeda, Masanobu Umeda, Masanobu 691v.2 Constraint-based planar free form shape Lam, T.W. Lam, T.W. Yu, K.M. Yu, K.M. Yip, Y.C. Yip, Y.C. 685v.2 Surface patches for filling arbitrary topological networks Zhang, Wenzu Zhang, Wenzu Wang, Fengyin Wang, Fengyin Wu, Bo Wu, Bo Yang, Shuzi Yang, Shuzi 680v.1 Aspects of the design of a multiprocessor system for a flexible manufacturing system Abachi, H. Abachi, H. Ibrahim, R. Ibrahim, R. 72v.2 Neural network method to reconstruct the freeform surfaces Wang, Kai Wang, Kai Zhang, Caiming Zhang, Caiming 672v.2 Identifying and explaining infeasible assembly operations Abrantes, Maria Joao Abrantes, Maria Joao Hill, Simon D. Hill, Simon D. 612v.2 Automated correction of shape errors in manufacturing processes Van Den Berg, Bert Van Den Berg, Bert 635v.1 Author/Session/Page index IIv.1 2D boundary recovery based on medial axis transform Hu, Yujin Hu, Yujin Yuen, M.M.F. Yuen, M.M.F. Zhou, Ji Zhou, Ji 249v.1 System of cost control and analysis decision support under CIMS circumstance Xu, Baodong Xu, Baodong Gao, Bin Gao, Bin Chang, Jiazhong Chang, Jiazhong Xu, Bo Xu, Bo 255v.1 Product data management system Xue, Hongyuan Xue, Hongyuan Zhou, Ji Zhou, Ji Zhong, Yifang Zhong, Yifang 260v.1 Prototyping tool for flexible manufacturing systems Dalila, Boudebous Dalila, Boudebous 266v.1 Identification of grain growth in wood machining using artificial neural networks Karri, V. Karri, V. 606v.1 Automatic selection of die structure based on product features of deep-drawn components Sing, W.M. Sing, W.M. Rao, K.P. Rao, K.P. 600v.1 Towards adaptable product development Gardan, Y. Gardan, Y. Jung, J.P. Jung, J.P. Lanuel, Y. Lanuel, Y. Leinen, S. Leinen, S. Martin, B. Martin, B. Minich, C. Minich, C. Perrin, E. Perrin, E. Poinsignon, C. Poinsgnon, C. Stemart, I. Stemart, I. 594v.1 Exact recognition of compound feature by feature adjacency matrix elimination Yu, Yong Yu, Yong Zhang, Tie-chang Zhang, Tie-chang 588Foreword Tan, S.T. Tan, S.T. Iv.2 Author/session/page index IIv.1 Worldwide trends in rapid prototyping Wohlers, Terry T. Wohlers, Terry T. 1v.1 Responsiveness of machining environments Gindy, N.N. Gindy, N.N. Saad, S.M. Saad, S.M. 9v.1 The 21st century manufacturing automation and the social impact Kunii, Tosiyasu L. Kunii, Tosiyasu L. 21v.1 The current state of affairs in dimensional tolerancing: 1997a Voelcker, Herbert B. Voelcker, Herbert B. 30v.1 Application of a collaborative CAD on interactive remote coediting Kao, Y.C. Kao, Y.C. Lin, Grier C.I. Lin, Grier C.I. 44v.1 Intelligent packing design on assembly model Huang, G.P. Huang, G.P. Zhou, J. Zhou, J. Yu, Q. Yu, Q. Wang, C.H. Wang, C.H. Yuan, M.L. Yuan, M.L. 50v.1 Computer aided engineering system for cylindrical gearing Li, Rungfang Li, Rungfang Lin, Tengjiao Lin, Tengjiao Lin, Chao Lin, Chao Tang, Qian Tang, Qian Chen, Bingkui Chen, Bingkui 56v.1 Tools for assembly in a virtual environment Dewar, R.G. Dewar, R.G. Ritchie, J.M. Ritchie, J.M. Carpenter, I.D. Carpenter, I.D. Simmons, J.E.L. Simmons, J.E.L. 583v.1 Parametric geometry modelling based on an extended hypergraphy Meng, Xiangxu Meng. Xiangxu Li, Xueqing Li, Xueqing Gongbin Gongbin Wang, Jiaye Wang, Jiaye Liu, Shenquan Liu, Shenquan 60v.1 Reference models as an approach for the construction of flexible production planning and control systems Danglmaier, W. Dangelmaier, W. Kuhn, A. Kuhn, A. Langemann, T. Langemann, T. 272v.1 Generation of alternative process plans by net model Kang, Min-hyoung Kang, Min-hyoung Park, Ji-hyung Park, Ji-hyung Park, Myon-woong Park, Myon-woong 577v.1 Study on NC automatically programming for cartridge valve blocks Lin, Xie Lin, Xie 571v.1 An integrated system of CAPP and job shop scheduling Deng, Chao Deng, Chao Li, Peigen Li, Peigen Luo, Bin Luo, Bin 565v.2 Solutions to fundamental problems in B-spline curve design Qin, Kaihuai Qin, Kaihuai Guan, Youjiang Guan, Youjiang Wang, W. Wang, W. 665v.1 Isometric transformation between 2D and 3D surfaces Wu, Z. Wu, Z. Yuen, M.M.F. Yuen, M.M.F. 66v.1 Develop silicone steel sheet cutting patterns with filled-in blanks Cui, Yaodong Cui, Yaodong Zhu, Lian Zhu, Lian Jin, Aiming Jin, Aiming Cao, Ming Cao, Ming 560v.1 Dynamic mixed dispatching of FMS Krishna Kishore, A. Krishna Kishore, A. Ramesh Babu, N. Ramesh Babu, N. 554v.1 An FMS process planning system based on coloured petri nets Wong, T.N. Wong, T.N. Ng, K.H. Ng, K.H. Kwok, M.C.K. Kwok, M.C.K. 548v.1 The application of genetic algorithm in the planning of FMS system Keung, K.W. Keung, K.W. Ip, W.H. Ip, W.H. Li, Y. Li, Y. Wang, D.W. Wang, D.W. 542v.1 Simulation approach in planning and design of manufacturing cells - a case study Chan, F.T.S. Chan, F.T.S. Ip, R.W.L. Ip, R.W.L. 535v.1 An approach to automate the bending sequence of progressive dies Chan, C.C. Chan, C.C. Lai, C.H. Lai, C.H. 529v.1 Tolerance design and analysis using the tolerance regions Chen, Jyun-ming Chen, Jyun-ming Chen, Chi-hui Chen, Chi-hui 523v.1 A task-centred methodology to support an integrated and open computer aided manufacturing systems design environment Wu, B. Wu, B. Hull, R.S. Hull, R.S. 278v.1 Study of rapid intelligent tooling system based on RPM technology Du, Zhaohui Du, Zhaohui Zhang, Renji Zhang, Renji Yan, Yongnian Yan, Yongnian 284v.1 The application of hot melt adhesive to laminated object manufacuturing Zhang, Xianglin Zhang, Xianglin Huang, Jin Huang, Jin Li, Yan Li, Yan Huang, Shuhuai Huang, Shuhuai 290v.1 Internal company use of rapid prototyping and 3D- digitizing in the engineering design process Birke, C. Birke, C. Beyer, C. Beyer, C. Grote, K.H. Grote, K.H. 294v.1 A computation efficient slicing algorithm for rapid prototyping Choi, S.H. Choi, S.H. 300v.2 A study on an integrated CNC system for tool grinding Zhou, Yanhong Zhou, Yanhong Li, Jian Li, Jian Wang, Chenpei Wang, Chenpei Zhou, Ji Zhou, Ji 641v.1 Integrated CAM design and manufacturing system Tang, L. Tang, L. 517v.1 Implementation of design for assembly: assebly- centric modeling and digital mock-up system Jung, Yoong- ho Jung, Yoong-ho 510v.1 Standardization of base design sequences of heat- exchanger for power plant Yamaguchi, Hideyuki Yamaguchi, Hideyuki Zhang, Zhihua Zhang, Zhihua Nagasawa, Isao Nagasawa, Isao Umeda, Masanobu Umeda, Masanobu 504v.2 Towards a virtual design environment: a shared semantic product model Gui, Jin-kang Gui, Jin-kang Yla- Mononen, Timo Yla-Mononen, Timo Jokinen, Harri Jokinen, Harri 659v.1 A method for recognizing feature interactions Zhang, C. Zhang, Z. Chan, K.W. Chan, K.W. Chen, Y.H. Chen, Y.H. 492v.1 The feature modelling for a sculptured object Au, C.K. Au, C.K. Yuen, M.M.F. Yuen, M.M.F. 486v.1 3D objects feature match based on relational graph Wang, Xinhua Wang, Xinhua Huo, Chuanhue Huo, Chuanhue Li, Yuguang Li, Yuguang Li, Deren Li, Deren Huang, Peizhi Huang, Peizhi 480v.1 The structure of feature layers and its application in CAD/CAM integration Guo, Qun Guo, Qun Zhong, Yifang Zhong, Yifang Wan, Li Wan, Li Zhou, Ji Zhou, Ji 474v.1 Research on customer-oriented CAPP system modeling technique of prismatic parts based on feature Gao, Juhong Gao, Juhong Xu, Yanshen Xu, Yanshen 467v.1 Research of feature conversion and representation of product process information model Gao, Jian Gao, Jian Zheng, Detao Zheng, Detao Zhang, Ping Zhang, Ping Zhu, Guowang Zhu, Guowang Sun, Jian Sun, Jian 461v.1 Rapid prototyping on a large scale Gibson, I. Gibson, I. Mensing, G. Mensing, G. 455v.1 An extended slicing method for rapid prototyping Lee, Kwan H. Lee, Kwan H. Yoo, Il-sang Yoo, Il-sang 449v.1 Rapid prototyping using robot welding - process description Ribeiro, Fernando Ribeiro, Fernando Norrish, John Norrish, John 443v.1 Feature based optimization of part orientation for rapid prototyping Ng, Micky W.M. Ng, Micky W.M. Tan, S.T. Tan, S.T. 434v.2 A new approach to software development in concurrent engineering Yan, Jianxin Yan, Jianxin Mai, Chungfan Mai, Changfan Ming, Tang Ming, Tang 652v.1 An approach on decision support for selection of process chains of the tool and die making industry under special consideration of rapid prototyping technologies Durr, H. Durr, H. Kaschka, U. Kaschka, U. 426v.1 Rapid prototyping of golf clubs Jones, R. Jones, R. Mitchell, S.R. Mitchell, S.R. 420v.1 Shop-floor scheduling and data capturing system for Autonomous Manufacturing Island Lam, F.W. Lam, F.W. Ma, Y.J. Ma, Y.J. Lee, W.B. Lee, W.B. Zhang, S. Zhang, S. 414v.1 Simulation for evaluation of scheduling rules in flexible manufacturing systems Chan, F.T.S. Chan, F.T.S. Ip, R.W.L. Ip, R.W.L. 407v.1 An Alternative concept to MAPII for mass customization based on the object-oriented paradigm Rautenstrauch, Claus Rautenstrauch, Claus 401v.2 Key enabling technology for concurrent engineering Kuttner, Brian C. Kuttner, Brian C. 1093v.2 Features as autonomous agents: an alternative paradigm for concurrent engineering Jacquel, D. Jacquel, D. Salmon, J.C. Salmon, J.C. Mill, F.G. Mill, F.G. 1087v.2 Analysis of relationship among design methods Chen, Ke-zhang Chen, Ke-zhang 1079v.2 Forecasting and control of the component accuracy in turning with advanced algorithms Cheng, K. Cheng, K. Kirkwood, D. Kirkwood, D. Chen, X.H. Chen, X.H. 1075v.1 Smart drilling - a fuzzy decision system for planning drilling operations Ma, Mattew Jia Ma, Mattew Jia Du, R. Du, R. 196v.2 Investigation on machined surface temperature in turning Chu, T.H. Chu, T.H. Wallbank, J. Wallbank, J. 1069v.2 Design/manufacture CNC milling machine with open structure in control system W
Nanocrystalline Anatase Tio2/reduced Graphene Oxide Composite Films As Photoanodes For Photoelectrochemical Water Splitting Studies: The Role Of Reduced Graphene Oxide
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Nanocrystalline TiO2 and reduced graphene oxide (TiO2/RGO) composite films were prepared by combining a sol-gel method with hydrothermal treatment, employing titanium isopropoxide (Ti(OiPr)4) and graphene oxide (GO) as starting materials. Although several reports in the literature have explored the benefits of RGO addition in titania films for photocatalysis and water splitting reactions, the role of RGO in the composite is always described as that of a material that is able to act as an electron acceptor and transport electrons more efficiently. However, in most of these reports, no clear evidence for this "role" is presented, and the main focus is deviated to the improved efficiency and not to the reasons for said efficiency. In this study, we employed several techniques to definitively present our understanding of the role of RGO in titania composite films. The TiO2/RGO composite films were characterized by X ray diffraction, Raman spectroscopy, microscopy and electrochemical techniques. In photoelectrochemical water splitting studies, the TiO2/RGO(0.1%) photoelectrodes showed the highest photocurrent density values (0.20 mA cm-2 at 1.23 VRHE) compared to other electrodes, with an increase of 78% in relation to pristine TiO2 film (0.11 mA cm-2 at 1.23 VRHE). The transient absorption spectroscopy (TAS) results indicated increases in the lifetime and yield of both the photogenerated holes and electrons. Interestingly, the TiO2/RGO(0.1%) film exhibited the best charge generation upon excitation, corroborating the photoelectrochemical data. We proposed that in films with lower concentrations (<0.1 wt%), the RGO sheets are electron acceptors, and a decrease in the charge recombination processes is the immediate consequence. Thus, both holes and electrons live longer and contribute more effectively to the photocurrent density. © the Owner Societies 2016.18426082616CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico2010/18656-1, FAPESP, Conselho Nacional de Desenvolvimento Científico e Tecnológico2011/51593-6, FAPESP, Conselho Nacional de Desenvolvimento Científico e TecnológicoConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fujishima, A., Honda, K., (1972) Nature, 238, pp. 37-38Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., Lewis, N.S., (2010) Chem. Rev., 110, pp. 6446-6473Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K., (2007) Renewable Sustainable Energy Rev., 11, pp. 401-425Fakhouri, H., Pulpytel, J., Smith, W., Zolfaghari, A., Mortaheb, H.R., Meshkini, F., Jafari, R., Arefi-Khonsari, F., (2014) Appl. Catal., B, 144, pp. 12-21Ai, G.J., Mo, R., Xu, H., Chen, Q., Yang, S., Li, H.X., Zhong, J.X., (2015) J. Power Sources, 280, pp. 5-11Mohamed, A.M., Aljaber, A.S., Alqaradawi, S.Y., Allam, N.K., (2015) Chem. Commun., 51, pp. 12617-12620Su, J.Z., Guo, L.J., (2015) RSC Adv., 5, pp. 53012-53018Fabrega, C., Andreu, T., Tarancon, A., Flox, C., Morata, A., Calvo-Barrio, L., Morante, J.R., (2013) Int. J. Hydrogen Energy, 38, pp. 2979-2985Liu, S.H., Syu, H.R., (2012) Appl. Energy, 100, pp. 148-154O'Regan, B., Moser, J., Anderson, M., Grätzel, M., (1990) J. Phys. Chem., 94, pp. 8720-8726Westwood, A., Leary, R., (2011) Carbon, 49, pp. 741-772Dai, K., Peng, T.Y., Ke, D.N., Wei, B.Q., (2009) Nanotechnology, 20, p. 125603Cong, Y., Li, X.K., Dong, Z.J., Yuan, G.M., Cui, Z.W., Zhang, J., (2015) Mater. Lett., 138, pp. 200-203Sun, M.X., Ma, X.Q., Chen, X., Sun, Y.J., Cui, X.L., Lin, Y.H., (2014) RSC Adv., 4, pp. 1120-1127Ranganathan, K., Morais, A., Nongwe, I., Longo, C., Nogueira, A.F., Coville, N.J., (2015) J. Mol. Catal. A: Chem., , in pressDe Morais, A., Loiola, L.M.D., Benedetti, J.E., Goncalves, A.S., Avellaneda, C.A.O., Clerici, J.H., Cotta, M.A., Nogueira, A.F., (2013) J. Photochem. Photobiol., A, 251, pp. 78-84Xiang, Q.J., Yu, J.G., Jaroniec, M., (2012) Chem. Soc. Rev., 41, pp. 782-796Pei, S.F., Cheng, H.M., (2012) Carbon, 50, pp. 3210-3228Zhang, X.Y., Li, H.P., Cui, X.L., Lin, Y.H., (2010) J. Mater. Chem., 20, pp. 2801-2806Wang, B.W., Sun, Q.M., Liu, S.H., Li, Y.P., (2013) Int. J. Hydrogen Energy, 38, pp. 7232-7240Pei, F.Y., Liu, Y.L., Zhang, L., Wang, S.P., Xu, S.G., Cao, S.K., (2013) Mater. Res. Bull., 48, pp. 2824-2831Pei, F.Y., Liu, G.L., Xu, S.G., Lu, J., Wang, C.X., Cao, S.K., (2013) Int. J. Hydrogen Energy, 38, pp. 2670-2677Ng, Y.H., Lightcap, I.V., Goodwin, K., Matsumura, M., Kamat, P.V., (2010) J. Phys. Chem. Lett., 1, pp. 2222-2227Bell, N.J., Yun, H.N., Du, A.J., Coster, H., Smith, S.C., Amal, R., (2011) J. Phys. Chem. C, 115, pp. 6004-6009Li, H., Cui, X.L., (2014) Int. J. Hydrogen Energy, 39, pp. 19877-19886Benedetti, J.E., Bernardo, D.R., Morais, A., Bettini, J., Nogueira, A.F., (2015) RSC Adv., 5, pp. 33914-33922Almeida, B.M., Melo, M.A., Bettini, J., Benedetti, J.E., Nogueira, A.F., (2015) Appl. Surf. Sci., 324, pp. 419-431Morais, A., Alves, J.P.C., Lima, F.A.S., Lira-Cantu, M., Nogueira, A.F., (2015) J. Photonics Energy, 5, p. 057408Yang, N.L., Zhai, J., Wang, D., Chen, Y.S., Jiang, L., (2010) ACS Nano, 4, pp. 887-894Yeh, T.F., Cihlar, J., Chang, C.Y., Cheng, C., Teng, H.S., (2013) Mater. Today, 16, pp. 78-84Yang, M.Q., Xu, Y.J., (2013) J. Phys. Chem. C, 117, pp. 21724-21734Zhang, Y.H., Zhang, N., Tang, Z.R., Xu, Y.J., (2012) ACS Nano, 6, pp. 9777-9789Du, A.J., Ng, Y.H., Bell, N.J., Zhu, Z.H., Amal, R., Smith, S.C., (2011) J. Phys. Chem. Lett., 2, pp. 894-899Zhang, Y.H., Tang, Z.R., Fu, X.Z., Xu, Y.J., (2010) ACS Nano, 4, pp. 7303-7314Zhang, Y.H., Tang, Z.R., Fu, X., Xu, Y.J., (2011) ACS Nano, 5, pp. 7426-7435Perera, S.D., Mariano, R.G., Vu, K., Nour, N., Seitz, O., Chabal, Y., Balkus, K.J., (2012) ACS Catal., 2, pp. 949-956Liu, B.T., Huang, Y.J., Wen, Y., Du, L.J., Zeng, W., Shi, Y.R., Zhang, F., Wang, Y.H., (2012) J. Mater. Chem., 22, pp. 7484-7491Fan, J.J., Liu, S.W., Yu, J.G., (2012) J. Mater. Chem., 22, pp. 17027-17036Tang, J.W., Cowan, A.J., Durrant, J.R., Klug, D.R., (2011) J. Phys. Chem. C, 115, pp. 3143-3150Meng, F.K., Li, J.T., Cushing, S.K., Bright, J., Zhi, M.J., Rowley, J.D., Hong, Z.L., Wu, N.Q., (2013) ACS Catal., 3, pp. 746-751Oliva, F.Y., Avalle, L.B., Santos, E., Camara, O.R., (2002) J. Photochem. Photobiol., A, 146, pp. 175-188Berger, T., Monllor-Satoca, D., Jankulovska, M., Lana-Villarreal, T., Gomez, R., (2012) ChemPhysChem, 13, pp. 2824-2875Kumar, P.V., Bernardi, M., Grossman, J.C., (2013) ACS Nano, 7, pp. 1638-1645Tang, H.J., Hessel, C.M., Wang, J.Y., Yang, N.L., Yu, R.B., Zhao, H.J., Wang, D., (2014) Chem. Soc. Rev., 43, pp. 4281-4299Bharad, P.A., Sivaranjani, K., Gopinath, C.S., (2015) Nanoscale, 7, pp. 11206-11215Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., Bisquert, J., (2012) J. Am. Chem. Soc., 134, pp. 4294-4302Lopes, T., Andrade, L., Le Formal, F., Gratzel, M., Sivula, K., Mendes, A., (2014) Phys. Chem. Chem. Phys., 16, pp. 16515-1652
Proceedings of the third Asia-Pacific Symposium on Wind Engineering: December 13-15, 1993, Hong Kong
Includes bibliographical references and index.published_or_final_versionv.2 On control of along-wind and across-wind vibrations of structure by crossed dampers Zhang, X.T. Zhang, X.T. Zhang, R.C. Zhang, R.C. 859v.2 Turbulence scale effects on buffeting forces of a flat hexagonal section Kimura, K. Kimura, K. Fujino, Y. Fujino, Y. 637v.2 An experimental investigation of the effects of free-stream turbulence on streamwise surface pressures in separated and reattaching flows Li, Q.S. Li, Q.S. Melbourne, W.H. Melbourne, W.H. 631v.1 Flow around and mean pressure field on a circular cylinder placed downstream of a blunt-based flat plate in staggered arrangement Keser, H.Ibrahim Keser, H.Ibrahim Unal, M.Fevzi Unal, M.Fevzi 623v.1 A study of wake galloping of bridge stay-cables Yoshimura, T. Yoshimura, T. Savage, M.G. Savage, M.G. Tanaka, H. Tanaka, H. Urano, D. Urano, D. 617v.1 The vortex shedding of a group of three equispaced circular cylinders Xu, You-heng Xu, You-heng Cheng, Zhao Cheng, Zhao 611v.1 Vibration-induced wind forces on the two dimensional rectangular models Momomura, Y. Momomura, Y. Ohkuma, T. Ohkuma, T. Marukawa, H. Marukawa, H. Tsurumi, T. Tsurumi, T. 605v.1 Flow over partialy grooved cylinder with and without acoustic excitation Lo, K.W. Lo, K.W. Leung, Y.C. Leung, Y.C. Wong, C.H. Wong, C.H. Ko, N.W.M. Ko, N.W.M. 599v.1 Wong, P.T.Y. Wong, P.T.Y. Ko, N.W.M. Ko, N.W.M. Chiu, A.Y.W. Chiu, A.Y.W. 593v.1 Bridgesv.1 Flow characteristics of two square cylinders of different size in side-by-side arrangementv.1 Effect of horizontally inclined wind on the vortex induced oscillation of a rectangular cylinder Utsunomiya, H. Utsunomiya, H. Nagao, F. Nagao, F. Asano, K. Asano, K. Matsumoto, T. Matsumoto, T. 587v.1 Aerodynamic behavior of multiple elastic circular cylinders with vicinity arrangement Kubo, Y. Kubo, Y. Nakahara, T. Nakahara, T. Kato, K. Kato, K. 581v.1 Effects of turbulence characteristics on vortex- induced oscillation of two-dimensional cylinders with various structural damplings Kawatani, M. Kawatani, M. Suzuki, O. Suzuki, O. Kim, H. Kim, H. Kobayashi, H. Kobayashi, H. 575v.1 Numerical study of flow interaction behind two circular cylinders of equal diameters Ng, C.W. Ng, C.W. Ko, N.W.M. Ko, N.W.M. 569v.1 Numerical study of pressure fluctuations on rectangular cylinder in aerodynamic oscillation Tamura, T. Tamura, T. Itoh, Y. Itoh, Y. Wada, A. Wada, A. Kuwahara, K. Kuwahara, K. 563v.1 Mechanism of interference galloping of two identical cylinders in cross flow Dielen, B. Dielen, B. Ruscheweyh, H. Ruscheweyh, H. 557v.1 Research on the wind feature of landing typhoon on the surface Zheng, Zhihua Zheng, Zhihua Ma, Wendou Ma, Wendou 549v.1 Stochastic modelling of cyclones Balaji Rao, K. Balaji Rao, K. Thomas, K.C. Thomas, K.C. Appa Rao, T.V.S.R. Appa Rao, T.V.S.R. 543v.1 Probability - based wind speed in India Alam, M.J. Alam, M.J. Santhakumar, A.R. Santhakumar, A.R. 537v.1 Theoretical study on atmospheric boundary layer and the interaction with free atmosphere over local heating Qi, Ying Qi, Ying Zhou, Jiangnan Zhou, Jiangnan 471v.1 Theoretical study on cold-air damming of the Qinling Mountains Qi, Ying Qi, Ying Zhou, Jiangnan Zhou, Jiangnan 465v.1 A study on characteristics and simulation method of pulsating wind Li, Y.M. Li, Y.M. Lai, M. Lai, M. Zhao, Q. Zhao, Q. 459v.1 Characteristics of wind direction meander at the site of Guangdong Nuclear power station Zhou, Ruming Zhou, Ruming Yang, Zhongqin Yang, Zhongqin Yu, Wenzhuo Yu, Wenzhuo 453v.1 A study on the characteristics of steady mountain wind Li, Y.M. Li, Y.M. Lai, M. Lai, M. Wang, X.L. Wang, X.L. Wang, J.H. Wang, J.H. 447v.1 Research on the characters of land-sea breeze and environmental planning Lin, Kongguang Lin, Kongguang 441v.1 SODAR-A useful remote sounder to measure wind and turbulence Vogt, S. Vogt, S. Thomas, P. Thomas, P. 435v.1 An aeolian geographical informative system for structural engineering: some results Bartoli, Gianni Bartoli, Gianni Gusella, Vittorio Gusella, Vittorio Spinelli, Paolo Spinelli, Paolo 429v.1 Invited papersv.1 Full-scale measurements of windspeeds at a suburban area Miyashita, Koichi Miyashita, Koichi Tamura, Yukio Tamura, Yukio Asami, Yutake Asami, Yutake Naito, Syunichi Naito, Syunichi 423v.1 Wind tunnel study of the wind flow over Auckland City and comparison with full-scale data Flay, R.G.J. Flay, R.G.J. Andrews, R.J. Andrews, R.J. 417v.1 Was the Harris and Deaves velocity profile a step in the wrong directory? Paterson, D.A. Paterson, D.A. 411v.1 An investigation of aerodynamic loading for huge luminous lighthouse Ren, Y.H. Ren, Y.H. 403v.1 An analysis of galloping oscillation for the mast of the TV transmission tower Liang, Shuguo Liang, Shuguo Le, Junwang Le, Junwang Qu, Weilian Qu, Weilian 397v.1 Dynamic reliability of Wuhan T.V. Tower under the action of wind load Li, Qiusheng Li, Qiusheng Cao, Hong Cao, Hong Li, Guiqing Li, Guiqing 391v.1 Effects of soil-structure interaction and cracking on gust factor of R.C. chimneys Lakshaman, N. Lakshaman, N. Balakrishna Rao, S.V.S Balakrishna Rao, S.V.S. Venkateswarlu, B. Venkateswarlu, B. 385v.1 Analysis determination of equivalent modal damping ratios of a composite tower in wind-induced vibrations Huang, B.C. Huang, B.C. Leung, A.Y.T. Leung, A.Y.T. Lam, K.M. Lam, K.M. Cheung, Y.K. Cheung, Y.K. 379v.1 Full-scale measurements of Vortex-induced vibrations Ruscheweyh, Hans Ruscheweyh, Hans Galemann, Thomas Galemann, Thomas 373v.1 Dynamic characteristics and wind induced response of a steel frame tower Glanville, M.J. Glanville, M.J. Kwok, K.C.S. Kwok, K.C.S. 367v.1 The study of classification of typhoon landing on China Zhu, Ruizhao Zhu, Ruizhao Ji, Juzhi Ji, Juzhi Ma, Shuhong Ma, Shuhong 531v.1 Study on the exponential model of the fluctuating wind load Zhou, Bicheng Zhou, Bicheng Tao, Qibin Tao, Qibin 359v.1 The wind tunnel model testing of tall buildings of Haijiang Garden at the Chinese town in Shenzhen Cai, G.H. Cai, G.H. 353v.2 Study on aerostatic characteristics and aeroelastic instability of structural L-shaped, T-shaped and cross- shaped sections Okajima, Atsushi Okajiman, Atsuchi Ueno, Hisanori Ueno, Hisanor Yi, Donglai Yi, Donglai 649v.1 Dynamic behaviour of high-rise structures Cao, Hong Cao, Hong Li, Quisheng Li, Quisheng Ou, Siyuan Ou, Siyuan Li, Guiqing Li, Guiqing 347v.1 Bridge analysisv.1 An estimation procedure for wind induced torsion of tall buildings Beneke, D.L. Beneke, D.L. Kwok, K.C.S. Kwok, K.C.S. 341v.1 Reliability of tall buildings and high-rise structures based on comfortable requirement of residents Li, Guiqing Li, Guiqing Cao, Hong Cao, Hong Li, Qiusheng Li, Qiusheng Ou, Siyuan Ou, Siyuan 335v.1 Response of multistorey buildings subjected to wind loading Qamaruddin, M. Qamarunddin, M. Mauroof, A.L.M. Mauroof, A.L.M. Al-Hatimi, H.K.R. Al-Hatimi, H.K.R. 329v.1 Effect of angle of attack on vortex induced vibration and galloping of tall buildings in smooth and turbulent boundary layer flows Kawai, H. Kawai, H. 323v.1 The investigation of wind-induced dynamic response on a square - section tall building Zhang, Liangliang Zhang, Liangliang Xie, Changtian Xie, Changtian 317v.1 Observations and responses of occupants in high- rise buildings during severe typhoon Choi, Edmund C.C. Choi, Edmund C.C. 311v.1 Equivalent modal damping ratios of a composite tube -type tall building under dynamic wind loading Huang, B.C. Huang, B.C. Lam, K.M. Lam, K.M. Leung, A.Y.T. Leung, A.Y.T. Cheung, Y.K. Cheung, Y.K. 305v.1 Interannual variability of tropical cyclones making landfall over China Chan, Johnny C.L. Chan, Johnny C.L. Fong, Clarence C.K. Fong, Clarence C.K. 525v.1 A computer program for the evaluation of dynamic response of structures to wind turbulence Attou, M. Attou, M. 297v.1 Damping estimate from full-scale measurement of the dynamic response of a high-rise building under wind loads Jong Lou, J. Jong Lou, J. Lou, Kang-ning Lou, Kang- ning 291v.1 Random response analysis of multi-story and tall buildings under pulsating wind Xiao, M.K. Xiao, M.K. Lai, M. Lai, M. Zhang, Ch. Zhang, Ch. 285v.1 Simulation method of simultaneous time-series of multi-local wind forces on tall buildings by using dynamic balance data Yoshie, K. Yoshie, K. Ohkuma, T. Ohkuma, T. Marukawa, H. Marukawa, H. Niwa, H. Niwa, H. Teramoto, T. Teramoto, T. Kitamura, H. Kitamura, H. 279v.1 Stochastic stability of wind excited structures Lin, Y.K. Lin, Y.K. Li, Q.C. Li, Q.C. 273v.1 Equivalent wind spectrum for torsional response of symmetrical buildings Balendra, T. Balendra, T. Koh, C.G. Koh, C.G. Ramanathan, R. Ramanathan, R. 267v.1 An assessment of dynamic wind loads on a series of CAARC-like slender buildings Liu, Shangpei Liu, Shangpei Wang, Qizhi Wang, Qizhi Lee, B.E. Lee, B.E. 261v.1 A parametric study of dynamic wind loads on buildings Lee, B.E. Lee, B.E. Lui, S. Lui, S. Wang, Q. Wang, Q. Xie, C. Xie, C. 255v.1 A study of wing-resistant stability of long-span cable-stayed steel bridge Hou, Wen-wei Hou, Wen-wei 247v.1 Numerical simulation of flow around bridge deck by the penalty - hybrid/mixed FEM Zhu, B. Zhu, B. Chen, D.P. Chen, D.P. 241v.1 Estimating design wind speeds from short-term records Cheng, Edmond D.H. Cheng, Edmond D.H. Chiu, Arthur N.L. Chiu, Arthur N.L. 519v.1 Vortex-excited vibration control of bridges using TMD Chen, A.R. Chen, A.R. Xiang, H.F. Xiang, H.F. Gu, M. Gu, M. 235v.1 State-space method of wind-induced response analysis for suspension bridge Sun, Bingnan Sun, Bingnan Zhou, Qiang Zhou, Qiang Tang, Jinchun Tang, Jinchun 229v.1 A practical method of passive TMD for suppressing wind induced vertical buffeting of long-span bridges Gu, M. Gu, M. Xiang, H.F. Xiang, H.F. Chen, A.R. Chen, A.R. 223v.1 Damping in suspension bridges: sources, measurements and errors Brownjohn, J.M.W. Brownjohn, J.M.W. 217v.1 Gust response of a long span bridge by the time domain approach Santo, Jovito C. Santo, Jovito C. Miyata, Toshio Miyata, Toshio Yamada, Hitoshi 211v.1 Study on buffetin response spectrum method for long span bridges Chen, W. Chen, W. Gu, M. Gu, M. Xiang, H.F. Xiang, H.F. 205v.1 Wind-induced lateral-torsional instability of cable -stayed bridges during erection Boonyapinyo, Virote Boonyapinyo, Virote Miyata, Toshio Miyata, Toshio Yamada, Hitoshi Yamada, Hitoshi 199v.1 Predicting aerodynamic response of retrofitted Deer Isle bridge to turbulent wind Cai, Chun-sheng Cai, Chun- sheng Albrecht, Pedro Albrecht, Pedro Bosch, Harold R. Bosch, Harold R. 193v.1 Comparative study in coupled flutter analysis methods of a long span suspension bridge Yamada, Hitoshi Yamada, Hitoshi Miyata, Toshio Miyata, Toshio 187v.1 An analysis method for buffeting responses of flexible bridge with aerodynamic coupling between modes Qu, W.L. Qu, W.L. Xiang, H.F. Xiang, H.F. 181v.1 Analysis of peak gust vs. fastest-mile wind statistics Peterson, Richard E. Peterson, Richard E. Goldstein, Steven D. Goldstein, Steven D. Mehta, K.C. Mehta, K.C. 513v.1 System identification procedure for structural parameters and wind characteristics in ambient vibration surveys Jones, Nicholas P. Jones, Nicholas P. Shi, Tinghui Shi, Tinghui Hugh Ellis, J. Hugh Ellis, J. Scanlan, Robert H. Scanlan, Robert H. 175v.1 Wind resistant design for long span suspension bridges Kazama, K. Kazama, K. Yamada, H. Yamada, H. Yamada, H. Miyata, T. Miyata, T. 169v.1 Aeroelastic characteristics of a stressed ribbon pedestrian bridge spanning 252m Pirner, M. Pirner, M. 161v.1 Damping effects of cable cross ties in cable-stayed bridges Yamaguchi, H. Yamaguchi, H. Nagahawatta, H.D. Nagahawatta, H.D. 155v.1 Consideration of the typhoon behaviour of the Kao Ping Hsi Bridge in Taiwan Wenzel, Helmut Wenzel, Helmut 149v.1 Extensive identification of bridge deck aeroelatic coefficients: average angle of attack, Reynolds number and other parameter effects Curami, A. Curami, A. Zasso, A. Zasso, A. 143v.1 Comparison between wind tunnel test on a full aeroelastic model of the proposed Messina Bridge and numerical results (part II) Diana, G. Diana, G. Cheli, F. Cheli, F. Bruni, S. Bruni, S. Collina A. Collina A. Larose, G.L. Larose, G.L. 137v.1 Comparisons between wind tunnel tests on a full aeroelastic model of the proposed bridge over Stretto di Messina and numerical results (part I) Larose, G.L. Larose, G.L. Damsgaard, A. Damsgaard, A. Falco, M. Falco, M. Cigada, A. Cigada, A. 131v.1 Identification of flutter derivatives of bridge deck from free vibration data Iwamoto, M. Iwamoto, M. Fujino, Y. Fujino, Y. 125v.1 Analysis of experimental data from wind-induced response of a Long Span Bridge Brownjohn, J.M.W. Brownjohn, J.M.W. Zasso, A. Zasso, A. Stephen, G.A. Stephen, G.A. Severn, R.T. Severn, R.T. 119v.1 The numerical prediction of a turbulent flow over a curved hill Xu, Cheng Xu, Cheng Wu, Xiao-song Wu, Xiao -song Fa, Li-xia Fa, Li-xia Wang, Zhu-gao Wang, Zhu- gao 505v.1 Aerodynamic stability of self-anchored double deck suspension bridge Kwon, S.D. Kwon, S.D. Chang, S.P. Chang, S.P. Kim, Y.S. Kim, Y.S. Park, S.Y. Park, S.Y. 113v.1 Wind tunnel testing for the second Severn Bridge Irwin, P.A. Irwin, P.A. Xie, J. Xie, J. 107v.1 Study on aerodynamic selection of cross section for suspension bridges in China Xiang, H.F. Xiang, H.F. Lin, Z.X. Lin, Z.X. Song, J.Z. Song, J.Z. 101v.1 Methods of wind response investigation employed for the Kap Shui Mun Bridge Scanlan, R.H. Scanlan, R.H. Stroh, S.L. Stroh, S.L. Raggett, J.D. Raggett, J.D. 95v.1 Tsing Ma Bridge - superstructure evolution Beard, A.S. Beard, A.S. Simpson, A.G. Simpson, A.G. Coleman, S.A. Coleman, S.A. 89v.1 Effects of turbulence on torsional flutter of a bridge deck Kobayashi, H. Kobayashi, H. Hatanaka, A. Hatanaka, A. Ueda, T. Ueda, T. 83v.1 Improvements of aerodynamic behaviors for box girder bridges with triangular fairings Nagao, F. Nagao, F. Utsunomiya, H. Utsunomiya, H. Manabe, S. Manabe, S. Kawase, A. Kawase, A. 77v.1 The effect of section model details on aeroelastic parameters Jones, N.P. Jones, N.P. Scanlan, R.H. Scanlan, R.H. Sarkar, P.P. Sarkar, P.P. Singh, L. Singh, L. 71v.1 Interference between wind loading on group of structures Sun, T.F. Sun, T.F. Gu, Z.F. Gu, Z.F. 57v.1 On turbulent vortex shedding flow past 2D square cylinder predicted by CFD Murakami, S. Murakami, S. Mochida, A. Mochida, A. 41v.1 Study on turbulent flow over a two-dimensional ridge by a non-hydrostatic higher-order closure model Liu, H.N. Liu, H.N. Wu, X.M. Wu, X.M. 499v.1 Wind loads on low rise buildings Krishna, P. Krishna, P. 39v.1 The response of large roofs to wind action Melbourne, W.H. Melbourne, W.H. 27v.1 How can we simplify and generalize wind loads? Davenport, A.G. Davenport, A.G. 15v.1 Progress in physical modeling for wind-engineering Cermak, Jack E. Cermak, Jack E. 3v.2 Wind breaks, wind power and othersv.2 Transportationv.2 Atmospheric dispersionv.2 Pedestrian level windsv.2 Wind tunnel techniquesv.2 Dampers and active controlv.1 Numerical simulation of the local wind field and turbulent characteristics for sun-radiation heated, unstable stratified atmospheric boundary layer around a two-dimensional hill Du, Guoliang Du, Guoliang 493v.2 Learning from Hurricane Iniki Chiu, Arthur N.L. Chiu, Arthur N.L. Chiu, Gregory L.F. Chiu, Gregory L.F. 1195v.2 Aspects of the wind energy potential in the former Soviet Union Kukharkin, Nikolai N. Kukharkin, Nikolai N. 1189v.2 Effects of the incident flow on the motion downstream a backstep Aroussi, A. Aroussi, A. 655v.2 Control of bluff body flow separation Shah, D.A. Shah, D.A. Winoto, S.H. Winoto, S.H. Ou, W.C. Ou, W.C. 661v.2 Effects of aspect ratio and surface roughness on the time-averaged aerodynamic forces on cantilevered circular cylinders at high Reynolds numbers Uematsu, Y. Uematsu, Y. Yamada, M. Yamada, M. 667v.2 Navier-stokes calculation of flow field around three-dimensional blunt body Zhu, Guolin Zhu, Guolin Wang, Kaichun Wang, Kaichun Guo, Yingjun Guo, Yingjun 673v.2 Separation characteristics of flows over blunt structures in shear flows Zhu, X.Y. Zhu, X.Y. Yu, X.T. Yu, X.T. Shi, Z.C. Shi, Z.C. Cui, E.J. Cui, E.J. 679v.2 Weakly nonlinear deep water waves under wind action Yim, John Z. Yim, John Z. Chou, C.R. Chou, C.R. Liu, P.E. Liu, P.E. 1183v.2 The mechanism of unfavourable effects of wind on efficiency of dry cooling towers Wei, Qing-ding Wei, Qing-ding Zhang, Be-yin Zhang, Be-yin Liu, Ke-qi Liu, Ke-qi Du, Xiang-dong Du, Xiang-dong Meng, Xian-zhong Meng, Xian-zhong 1177v.2 Comparative study for assessment code of transport of radioactive material and research of model Li, Jikai Li, Jikai Wang, Jiaming Wang, Jiaming 1171v.2 Comparative study of the storm surge models proposed for Bangladesh: last developments and research needs As-Salek, J.A. As-Salek, J.A. Yasuda, T. Yasuda, T. 1165v.2 The stable position of a radar antenna system and application of the aerodynamic compensator to an array antenna Bian, Zongshan Bian, Zongshan Wu, Zhicheng Wu, Zhicheng 1159v.2 A research and exploitation on wind energy resources along the coast of Guangdong province Luo, Jinlin Luo, Jinlin 1155v.2 Wind codes and wind damagev.2 Flow visualization of a rotating wind turbine blade Dahlberg, Jan-Ake Dahlberg, Jan-Ake Ronsten, Goran Ronsten, Goran He, Dexin He, Dexin Chen, Ming Chen, Ming 1147v.1 Flow blocking on windward slope Sang, Jianguo Sang, Jianguo Zhang, Boyin Zhang, Boyin Niu, Zhen-nan Niu, Zhen-nan 489v.2 Wind powered treatment of waste water - FRED's 'water' process Shrimpton, J.S. Shrimpton, J.S. Janes, D.A. Janes, D.A. Thomas, N.H. Thomas, N.H. 1141v.2 The deposition of sand particles on and around structures with domes roofs Aroussi, A. Aroussi, A. 1135v.2 Modelling the flow field around windbreaks with surface vorticity method Chou, C.R. Chou, C.R. Yim, John Z. Yim, John Z. Yu, C.C. Yu, C.C. 1129v.2 Measurement of the Reynolds stress structure behind the multiple windbreaks across-wind Shiau, Bao-shi Shiau, Bao-shi 1123v.2 Full-scale measurements of the effect of a porous windbreak on wind spectra Richardson, G.M. Richardson, G.M. Richards, P.J. Richards, P.J. 1117v.2 100 passenger air foil craft type AF-2 Hu, An-ding Hu, An-ding 1109v.2 Study on the numerical method for surrounding flow field of coaches Gong, G.Y. Gong, G.Y. Chen, Y.S. Chen, Y.S. Li, Q.F. Li, Q.F. Gao, L. Gao, L. 1103v.2 Numerical simulation and characteristic analysis of flow around embankment of railway line Zhang, Jianbo Zhang, Jianbo Cui, Erjie Cui, Erjie Fu, Guangming Fu, Guangming 1097v.2 Wake survey and analysis on the scaled car models Wang, Maoxun Wang, Maoxun Zhou, Yuping Zhou, Yuping Zhu, Wei Zhu, Wei 1091v.2 Roofs and low risev.1 Experimental and numerical simulation of flow around two-dimensional hills Ferreira, A.D. Ferreira, A.D. Lopes, A.M.G. Lopes, A.M.G. Viegas, D.X. Viegas, D.X. Sousa, A.C.M. Sousa, A.C.M. 483v.2 Some wind tunnel experiments on three-dimensional effects of circulation control sail wing Pan, Weiming Pan, Weiming Wang, Xianfu Wang, Xianfu Zhang, Shaoqing Zhang, Shaoqing 1085v.2 Environment over Helideck of offshore platform Chen, Qiang Chen, Qiang Gu, Zhifu Gu, Zhifu Sun, Tianfeng Sun, Tianfeng Song, San Song, San 1079v.2 Drag reduction of trucks through boundary-layer control Modi, V.J. Modi, V.J. St.Hill, S. St.Hill, S. Yokomizo, T. Yokomizo, T. 1073v.2 Low-altitude wind structure and atmospheric pollutant diffusion Zheng, Xiong Zheng, Xiong 1065v.2 Experimental studies of dispersion near building complex Zhang, Maoshuan Zhang, Maoshuan Yao, Rentai Yao, Rentai 1059v.2 Wind tunnel modeling of dust emission and deposition in lower atmosphere: similarity principles Xuan, Jie Xuan, Jie Ye, Wenhu Ye, Wenhu 1053v.2 Wind-tunnel simulation on the thermal buoyancy plume rise and disperson from multiple stack Xie, G.L. Xie, G.L. Jiang, W.M. Jiang, W.M. 1047v.2 A puff model under changing meteorological condition used in a real time dose assessment system for Qinshan nuclear power plant Hu, Erbang Hu, Erbang Wang, Han Wang, Han 1041v.2 Study on the thermal internal boundary layer and dispersion of air pollutant in coastal area by numerical simulation Jiang, W.M. Jiang, W.M. Yu, H.B. Yu, H.B. 1035v.2 A new research method of atmospheric environmental capacity Liu, Baozhang Liu, Baozhang 1029v.1 Numerical simulation of the thermal internal boundary layer in coastal area - application of E-... closure model Wang, W.G. Wang, W.G. Jiang, W.M. Jiang, W.M. 477v.2 Bluff body aerodynamics and separationv.2 Plume diffusion model of internal boundary layer Xuan, Jie Xuan, Jie Ye, Wenhu Ye, Wenhu Sun, Tianfeng Sun, Tianfeng 1023v.2 Models of urban air diffusion and their application Wang, Shu-fang Wang, Shu-fang 1017v.2 Building downwash of plumes and plume interactions Cheung, J.C.K. Cheung, J.C.K. Melbourne, W.H. Melbourne, W.H. 1011v.2 Effects of model scale in estimating pollutant dispersion near buildings Saathoff, P.J. Saathoff, P.J. Stathopoulos, T. Stathopoulos, T. Dobrescu, M. Dobrescu, M. 1005v.2 Field study of roof top dispersion in urban area Lam, K.S. Lam, K.S. Kot, S.C. Kot, S.C. 999v.2 Computational atmospheric dispersion of a pollutant over a complex-shaped terrain Morais, M.J.S. Morais, M.J.S. Oliveira, L.A. Oliveira, L.A. 993v.2 Evaluation of pedestrian level wind environment around a row of tall buildings To, A.P. To, A.P. Lam, K.M. Lam, K.M. Thung, D.K.T. Thung, D.K.T. 985v.2 Generic models for pedestrian-level winds in built- up regions Stathopoulos, Theodore Stathopoulos, Theodore Wu, Hanqing Wu, Hanqing 979v.2 Wind environment assessment: a case study in the Brisbane CBD Letchford, C.W. Letchford, C.W. Ginger, J.D. Ginger, J.D. 973v.2 Mean velocity profiles in the wake of two prismatic bodies in tandem arrangement Lak
Mapping a Partial Andromonoecy Locus in Citrullus lanatus Using BSA-Seq and GWAS Approaches
[EN] The sexual expression of watermelon plants is the result of the distribution and occurrence of male, female, bisexual and hermaphrodite flowers on the main and secondary stems. Plants can be monoecious (producing male and female flowers), andromonoecious (producing male and hermaphrodite flowers), or partially andromonoecious (producing male, female, bisexual, and hermaphrodite flowers) within the same plant. Sex determination of individual floral buds and the distribution of the different flower types on the plant, are both controlled by ethylene. A single missense mutation in the ethylene biosynthesis geneCitACS4, is able to promote the conversion of female into hermaphrodite flowers, and therefore of monoecy (genotypeMM) into partial andromonoecy (genotypeMm) or andromonoecy (genotypemm). We phenotyped and genotyped, for theM/mlocus, a panel of 207 C. lanatusaccessions, including five inbreds and hybrids, and found several accessions that were repeatedly phenotyped as PA (partially andromonoecious) in several locations and different years, despite beingMM. A cosegregation analysis between a SNV inCitACS4and the PA phenotype, demonstrated that the occurrence of bisexual and hermaphrodite flowers in a PA line is not dependent onCitACS4, but conferred by an unlinked recessive gene which we calledpa. Two different approaches were performed to map thepagene in the genome ofC. lanatus: bulk segregant analysis sequencing (BSA-seq) and genome wide association analysis studies (GWAS). The BSA-seq study was performed using two contrasting bulks, the monoecious M-bulk and the partially andromonoecious PA-bulk, each one generated by pooling DNA from 20 F2 plants. For GWAS, 122 accessions from USDA gene bank, already re-sequenced by genotyping by sequencing (GBS), were used. The combination of the two approaches indicates thatpamaps onto a genomic region expanding across 32.24-36.44 Mb in chromosome 1 of watermelon. Fine mapping narrowed down thepalocus to a 867 Kb genomic region containing 101 genes. A number of candidate genes were selected, not only for their function in ethylene biosynthesis and signalling as well as their role in flower development and sex determination, but also by the impact of the SNPs and indels differentially detected in the two sequenced bulks.This work has been funded by grant UAL18-BIO-B017-B, awarded by the call "Proyectos UAL-FEDER " within the framework of the 2014-2020 FEDER-Andalusia Operational Program, as well as by the research group BIO293 of the University of Almeria.Aguado, E.; García, A.; Iglesias-Moya, J.; Romero, J.; Wehner, TC.; Gómez-Guillamón, ML.; Picó Sirvent, MB.... (2020). Mapping a Partial Andromonoecy Locus in Citrullus lanatus Using BSA-Seq and GWAS Approaches. Frontiers in Plant Science. 11:1-16. https://doi.org/10.3389/fpls.2020.01243S11611Aguado, E., García, A., Manzano, S., Valenzuela, J. L., Cuevas, J., Pinillos, V., & Jamilena, M. (2018). The sex-determining gene CitACS4 is a pleiotropic regulator of flower and fruit development in watermelon (Citrullus lanatus). Plant Reproduction, 31(4), 411-426. doi:10.1007/s00497-018-0346-1Bo, K., Miao, H., Wang, M., Xie, X., Song, Z., Xie, Q., … Gu, X. (2018). Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. Theoretical and Applied Genetics, 132(1), 27-40. doi:10.1007/s00122-018-3191-6Bo, K., Wei, S., Wang, W., Miao, H., Dong, S., Zhang, S., & Gu, X. (2019). QTL mapping and genome-wide association study reveal two novel loci associated with green flesh color in cucumber. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-1835-6Boualem, A., Fergany, M., Fernandez, R., Troadec, C., Martin, A., Morin, H., … Bendahmane, A. (2008). A Conserved Mutation in an Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Melons. Science, 321(5890), 836-838. doi:10.1126/science.1159023Boualem, A., Troadec, C., Kovalski, I., Sari, M.-A., Perl-Treves, R., & Bendahmane, A. (2009). A Conserved Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Two Cucumis Species. PLoS ONE, 4(7), e6144. doi:10.1371/journal.pone.0006144Boualem, A., Troadec, C., Camps, C., Lemhemdi, A., Morin, H., Sari, M.-A., … Bendahmane, A. (2015). A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science, 350(6261), 688-691. doi:10.1126/science.aac8370Boualem, A., Lemhemdi, A., Sari, M.-A., Pignoly, S., Troadec, C., Abou Choucha, F., … Bendahmane, A. (2016). The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera. PLOS ONE, 11(5), e0155444. doi:10.1371/journal.pone.0155444Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308Chae, E., Tan, Q. K.-G., Hill, T. A., & Irish, V. F. (2008). AnArabidopsisF-box protein acts as a transcriptional co-factor to regulate floral development. Development, 135(7), 1235-1245. doi:10.1242/dev.015842Chen, H., Sun, J., Li, S., Cui, Q., Zhang, H., Xin, F., … Huang, S. (2016). An ACC Oxidase Gene Essential for Cucumber Carpel Development. Molecular Plant, 9(9), 1315-1327. doi:10.1016/j.molp.2016.06.018Crow, J. F. (1990). Mapping functions. Genetics, 125(4), 669-671. doi:10.1093/genetics/125.4.669DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491-498. doi:10.1038/ng.806Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188Dou, J., Lu, X., Ali, A., Zhao, S., Zhang, L., He, N., & Liu, W. (2018). Genetic mapping reveals a marker for yellow skin in watermelon (Citrullus lanatus L.). PLOS ONE, 13(9), e0200617. doi:10.1371/journal.pone.0200617Dou, J., Zhao, S., Lu, X., He, N., Zhang, L., Ali, A., … Liu, W. (2018). Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theoretical and Applied Genetics, 131(4), 947-958. doi:10.1007/s00122-018-3050-5Duan, Y., Li, S., Chen, Z., Zheng, L., Diao, Z., Zhou, Y., … Wu, W. (2012). Dwarf and deformed flower 1,encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativaL.). The Plant Journal, 72(5), 829-842. doi:10.1111/j.1365-313x.2012.05126.xEstornell, L. H., Landberg, K., Cierlik, I., & Sundberg, E. (2018). SHI/STY Genes Affect Pre- and Post-meiotic Anther Processes in Auxin Sensing Domains in Arabidopsis. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00150Gagne, J. M., Smalle, J., Gingerich, D. J., Walker, J. M., Yoo, S.-D., Yanagisawa, S., & Vierstra, R. D. (2004). Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences, 101(17), 6803-6808. doi:10.1073/pnas.0401698101García, A., Aguado, E., Martínez, C., Loska, D., Beltrán, S., Valenzuela, J. L., … Jamilena, M. (2019). The ethylene receptors CpETR1A and CpETR2B cooperate in the control of sex determination in Cucurbita pepo. Journal of Experimental Botany, 71(1), 154-167. doi:10.1093/jxb/erz417Gebremeskel, H., Dou, J., Li, B., Zhao, S., Muhammad, U., Lu, X., … Liu, W. (2019). Molecular Mapping and Candidate Gene Analysis for GA3 Responsive Short Internode in Watermelon (Citrullus lanatus). International Journal of Molecular Sciences, 21(1), 290. doi:10.3390/ijms21010290Giovannoni, J. J., Wing, R. A., Ganal, M. W., & Tanksley, S. D. (1991). Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 19(23), 6553-6568. doi:10.1093/nar/19.23.6553Grover, A. (2012). Plant Chitinases: Genetic Diversity and Physiological Roles. Critical Reviews in Plant Sciences, 31(1), 57-73. doi:10.1080/07352689.2011.616043Gu, S.-Y., Wang, L.-C., Cheuh, C.-M., & Lo, W.-S. (2019). CHITINASE LIKE1 Regulates Root Development of Dark-Grown Seedlings by Modulating Ethylene Biosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00600Guo, H., & Ecker, J. R. (2003). Plant Responses to Ethylene Gas Are Mediated by SCFEBF1/EBF2-Dependent Proteolysis of EIN3 Transcription Factor. Cell, 115(6), 667-677. doi:10.1016/s0092-8674(03)00969-3Guo, S., Zhao, S., Sun, H., Wang, X., Wu, S., Lin, T., … Xu, Y. (2019). Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics, 51(11), 1616-1623. doi:10.1038/s41588-019-0518-4Gur, A., Tzuri, G., Meir, A., Sa’ar, U., Portnoy, V., Katzir, N., … Tadmor, Y. (2017). Genome-Wide Linkage-Disequilibrium Mapping to the Candidate Gene Level in Melon (Cucumis melo). Scientific Reports, 7(1). doi:10.1038/s41598-017-09987-4Hermans, C., Porco, S., Verbruggen, N., & Bush, D. R. (2009). Chitinase-Like Protein CTL1 Plays a Role in Altering Root System Architecture in Response to Multiple Environmental Conditions
. Plant Physiology, 152(2), 904-917. doi:10.1104/pp.109.149849Hou, J., Zhou, Y.-F., Gao, L.-Y., Wang, Y.-L., Yang, L.-M., Zhu, H.-Y., … Hu, J.-B. (2018). Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01577Hu, B., Li, D., Liu, X., Qi, J., Gao, D., Zhao, S., … Yang, L. (2017). Engineering Non-transgenic Gynoecious Cucumber Using an Improved Transformation Protocol and Optimized CRISPR/Cas9 System. Molecular Plant, 10(12), 1575-1578. doi:10.1016/j.molp.2017.09.005Ji, G., Zhang, J., Gong, G., Shi, J., Zhang, H., Ren, Y., … Xu, Y. (2015). Inheritance of sex forms in watermelon (Citrullus lanatus). Scientia Horticulturae, 193, 367-373. doi:10.1016/j.scienta.2015.07.039Ji, G., Zhang, J., Zhang, H., Sun, H., Gong, G., Shi, J., … Xu, Y. (2016). Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4
(CitACS4
) led to andromonoecy in watermelon. Journal of Integrative Plant Biology, 58(9), 762-765. doi:10.1111/jipb.12466Knopf, R. R., & Trebitsh, T. (2006). The Female-Specific Cs-ACS1G Gene of Cucumber. A Case of Gene Duplication and Recombination between the Non-Sex-Specific 1-Aminocyclopropane-1-Carboxylate Synthase Gene and a Branched-Chain Amino Acid Transaminase Gene. Plant and Cell Physiology, 47(9), 1217-1228. doi:10.1093/pcp/pcj092Kuusk, S., Sohlberg, J. J., Magnus Eklund, D., & Sundberg, E. (2006). Functionally redundantSHIfamily genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant Journal, 47(1), 99-111. doi:10.1111/j.1365-313x.2006.02774.xLevi, A., Jarret, R., Kousik, S., Patrick Wechter, W., Nimmakayala, P., & Reddy, U. K. (2017). Genetic Resources of Watermelon. Plant Genetics and Genomics: Crops and Models, 87-110. doi:10.1007/7397_2016_34Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Li, M.-X., Yeung, J. M. Y., Cherny, S. S., & Sham, P. C. (2011). Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics, 131(5), 747-756. doi:10.1007/s00439-011-1118-2Lai, Y.-S., Shen, D., Zhang, W., Zhang, X., Qiu, Y., Wang, H., … Li, X. (2018). Temperature and photoperiod changes affect cucumber sex expression by different epigenetic regulations. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1490-3Li, Z., Han, Y., Niu, H., Wang, Y., Jiang, B., & Weng, Y. (2020). Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent Femaleness (F) locus. Horticulture Research, 7(1). doi:10.1038/s41438-020-0251-2Lin, C.-K., Lee, N.-Y., Huang, P.-L., & Do, Y.-Y. (2015). Gene structure and expression characteristics of the auxin receptor TIR1 ortholog in Momordica charantia and developmental analysis of its promoter in transgenic plants. Journal of Plant Biochemistry and Biotechnology, 25(3), 253-262. doi:10.1007/s13562-015-0336-4Lotan, T., Ori, N., & Fluhr, R. (1989). Pathogenesis-related proteins are developmentally regulated in tobacco flowers. The Plant Cell, 1(9), 881-887. doi:10.1105/tpc.1.9.881Mansfeld, B. N., & Grumet, R. (2018). QTLseqr: An R Package for Bulk Segregant Analysis with Next‐Generation Sequencing. The Plant Genome, 11(2), 180006. doi:10.3835/plantgenome2018.01.0006Manzano, S., Martínez, C., García, J. M., Megías, Z., & Jamilena, M. (2014). Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus). Plant Physiology and Biochemistry, 85, 96-104. doi:10.1016/j.plaphy.2014.11.004Manzano, S., Aguado, E., Martínez, C., Megías, Z., García, A., & Jamilena, M. (2016). The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus). PLOS ONE, 11(5), e0154362. doi:10.1371/journal.pone.0154362Mara, C. D., & Irish, V. F. (2008). Two GATA Transcription Factors Are Downstream Effectors of Floral Homeotic Gene Action in Arabidopsis . Plant Physiology, 147(2), 707-718. doi:10.1104/pp.107.115634Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., Morin, H., … Bendahmane, A. (2009). A transposon-induced epigenetic change leads to sex determination in melon. Nature, 461(7267), 1135-1138. doi:10.1038/nature08498Martínez, C., Manzano, S., Megías, Z., Barrera, A., Boualem, A., Garrido, D., … Jamilena, M. (2014). Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta, 239(6), 1201-1215. doi:10.1007/s00425-014-2043-0Matsumoto, N. (2001). A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes & Development, 15(24), 3355-3364. doi:10.1101/gad.931001Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828-9832. doi:10.1073/pnas.88.21.9828Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. doi:10.1093/nar/8.19.4321Nimmakayala, P., Tomason, Y. R., Abburi, V. L., Alvarado, A., Saminathan, T., Vajja, V. G., … Reddy, U. K. (2016). Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01437Oren, E., Tzuri, G., Vexler, L., Dafna, A., Meir, A., Faigenboim, A., … Gur, A. (2019). The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. Journal of Experimental Botany, 70(15), 3781-3794. doi:10.1093/jxb/erz182Paris, H. S. (2015). Origin and emergence of the sweet dessert watermelon,Citrullus lanatus. Annals of Botany, 116(2), 133-148. doi:10.1093/aob/mcv077POOLE, C. F., & GRIMBALL, P. C. (1939). INHERITANCE OF NEW SEX FORMS IN CUCUMIS MELO L. Journal of Heredity, 30(1), 21-25. doi:10.1093/oxfordjournals.jhered.a104626Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., & Genschik, P. (2003). EIN3-Dependent Regulation of Plant Ethylene Hormone Signaling by Two Arabidopsis F Box Proteins. Cell, 115(6), 679-689. doi:10.1016/s0092-8674(03)00968-1Prothro, J., Abdel-Haleem, H., Bachlava, E., White, V., Knapp, S., & McGregor, C. (2013). Quantitative Trait Loci Associated with Sex Expression in an Inter-subspecific Watermelon Population. Journal of the American Society for Horticultural Science, 138(2), 125-130. doi:10.21273/jashs.138.2.125Pujol, M., Alexiou, K. G., Fontaine, A.-S., Mayor, P., Miras, M., Jahrmann, T., … Aranda, M. A. (2019). Mapping Cucumber Vein Yellowing Virus Resistance in Cucumber (Cucumis sativus L.) by Using BSA-seq Analysis. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01583Qiao, H., Chang, K. N., Yazaki, J., & Ecker, J. R. (2009). Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes & Development, 23(4), 512-521. doi:10.1101/gad.1765709Reichheld, J. P., Riondet, C., Delorme, V., Vignols, F., & Meyer, Y. (2010). Thioredoxins and glutaredoxins in development. Plant Science, 178(5), 420-423. doi:10.1016/j.plantsci.2010.03.001Renner, S. S., Chomicki, G., & Greuter, W. (2014). (2313) Proposal to conserve the name Momordica lanata (Citrullus lanatus) (watermelon, Cucurbitaceae), with a conserved type, against Citrullus battich. Taxon, 63(4), 941-942. doi:10.12705/634.29Rosa, J. T. (1928). The inheritance of flower types inCucumisandCitrullus. Hilgardia, 3(9), 233-250. doi:10.3733/hilg.v03n09p233Salman-Minkov, A., Levi, A., Wolf, S., & Trebitsh, T. (2008). ACC Synthase Genes are Polymorphic in Watermelon (Citrullus spp.) and Differentially Expressed in Flowers and in Response to Auxin and Gibberellin. Plant and Cell Physiology, 49(5), 740-750. doi:10.1093/pcp/pcn045Sanders, P. M., Bui, A. Q., Weterings, K., McIntire, K. N., Hsu, Y.-C., Lee, P. Y., … Goldberg, R. B. (1999). Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sexual Plant Reproduction, 11(6), 297-322. doi:10.1007/s004970050158Singh, S., Yadav, S., Singh, A., Mahima, M., Singh, A., Gautam, V., & Sarkar, A. K. (2019). Auxin signaling modulates
LATERAL ROOT PRIMORDIUM
1
(
LRP
1
) expression during lateral root development in Arabidopsis. The Plant Journal, 101(1), 87-100. doi:10.1111/tpj.14520Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., … Terauchi, R. (2013). QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 74(1), 174-183. doi:10.1111/tpj.12105Takakura, Y., Ito, T., Saito, H., Inoue, T., Komari, T., & Kuwata, S. (2000). Plant Molecular Biology, 42(6), 883-897. doi:10.1023/a:1006401816145Tan, J., Tao, Q., Niu, H., Zhang, Z., Li, D., Gong, Z., … Li, Z. (2015). A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 128(12), 2483-2493. doi:10.1007/s00122-015-2603-0Trebitsh, T., Staub, J. E., & O’Neill, S. D. (1997). Identification of a 1-Aminocyclopropane-1-Carboxylic Acid Synthase Gene Linked to the Female (F) Locus That Enhances Female Sex Expression in Cucumber. Plant Physiology, 113(3), 987-995. doi:10.1104/pp.113.3.987Vandenbussche, M., Horstman, A., Zethof, J., Koes, R., Rijpkema, A. S., & Gerats, T. (2009). Differential Recruitment ofWOXTranscription Factors for Lateral Development and Organ Fusion in Petunia andArabidopsis . The Plant Cell, 21(8), 2269-2283. doi:10.1105/tpc.109.065862Wang, X., Bao, K., Reddy, U. K., Bai, Y., Hammar, S. A., Jiao, C., … Fei, Z. (2018). The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies, and core collection development. Horticulture Research, 5(1). doi:10.1038/s41438-018-0080-8Wehner, T. C. (s. f.). Watermelon. Vegetables I, 381-418. doi:10.1007/978-0-387-30443-4_12Wu, S., Wang, X., Reddy, U., Sun, H., Bao, K., Gao, L., … Fei, Z. (2019). Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. Plant Biotechnology Journal, 17(12), 2246-2258. doi:10.1111/pbi.13136Xing, S., & Zachgo, S. (2008). ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. The Plant Journal, 53(5), 790-801. doi:10.1111/j.1365-313x.2007.03375.xXing, L., Li, Z., Khalil, R., Ren, Z., & Yang, Y. (2011). Functional identification of a novel F-box/FBA gene in tomato. Physiologia Plantarum, 144(2), 161-168. doi:10.1111/j.1399-3054.2011.01543.xYagcioglu, M., Gulsen, O., Yetisir, H., Solmaz, I., & Sari, N. (2016). Preliminary studies of genom-wide association mapping for some selected morphological characters of watermelons. Scientia Horticulturae, 210, 277-284. doi:10.1016/j.scienta.2016.08.001Yu, L. P., Miller, A. K., & Clark, S. E. (2003). POLTERGEIST Encodes a Protein Phosphatase 2C that Regulates CLAVATA Pathways Controlling Stem Cell Identity at Arabidopsis Shoot and Flower Meristems. Current Biology, 13(3), 179-188. doi:10.1016/s0960-9822(03)00042-3Yu, H., Wu, J., Xu, N., & Peng, M. (2007). Roles of F-box Proteins in Plant Hormone Responses. Acta Biochimica et Biophysica Sinica, 39(12), 915-922. doi:10.1111/j.1745-7270.2007.00358.xZhang, Z., Mao, L., Chen, H., Bu, F., Li, G., Sun, J., … Huang, S. (2015). Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber. The Plant Cell, 27(6), 1595-1604. doi:10.1105/tpc.114.135848ZHANG, J., SHI, J., JI, G., ZHA
Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO
[EN] Understanding and tuning the catalytic properties of metals atomically dispersed on oxides are major stepping-stones toward a rational development of single-atom catalysts (SACs). Beyond individual showcase studies, the design and synthesis of structurally regular series of SACs opens the door to systematic experimental investigations of performance as a function of metal identity. Herein, a series of single-atom catalysts based on various 4d (Ru, Rh, Pd) and Sd (Ir, Pt) transition metals has been synthesized on a common MgO carrier. Complementary experimental (X-ray absorption spectroscopy) and theoretical (Density Functional Theory) studies reveal that, regardless of the metal identity, metal cations occupy preferably octahedral coordination MgO lattice positions under step-edges, hence highly confined by the oxide support. Upon exposure to O-2-lean CO oxidation conditions, FTIR spectroscopy indicates the partial deconfinement of the monatomic metal centers driven by CO at precatalysis temperatures, followed by the development of surface carbonate species under steady-state conditions. These findings are supported by DFT calculations, which show the driving force and final structure for the surface metal protrusion to be metal-dependent, but point to an equivalent octahedral-coordinated M4+ carbonate species as the resting state in all cases. Experimentally, apparent reaction activation energies in the range of 96 +/- 19 kJ/mol are determined, with Pt leading to the lowest energy barrier. The results indicate that, for monatomic sites in SACs, differences in CO oxidation reactivity enforceable via metal selection are of lower magnitude than those evidenced previously through the mechanistic involvement of adjacent redox centers on the oxide carrier, suggesting that tuning of the oxide surface chemistry is as relevant as the selection of the supported metal.XAS experiments were performed at B18 beamline, Diamond Light Source, United Kingdom (proposals Nr. SP17377 and SP19072) and BL22 beamline, ALBA Light Source, Spain (experiment 2019023278). Beamline scientists D. Gianolio (Diamond) and L. Simonelli and C. Marini (ALBA) are acknowledged for their assistance with the beamline setup during XAS experiments. The authors are grateful to M. Garcia, E. Andres, M. E. Martinez, and I. Lopez (ITQ) for assistance during the XAS experiments. J. Ternieden (MPIKOFO) is acknowledged for the performance of XRD experiments. J.M. Salas (ITQ) is acknowledged for his experimental contribution to the CO-FTIR studies, and M.D. Soriano and A. Munoz for the recording of XP spectra. P.N.P. and F.S. acknowledge support by the state of BademWurttemberg through bwHPC (bwUnicluster and JUSTUS, RV bw17D01) and support from the Helmholtz Association is also gratefully acknowledged. This research received funding from the Alexander von Humboldt Foundation (postdoctoral grant to B.B.S.), the Max Planck Society and the Fonds der Chemischen Industry (FCI, Germany). The authors are grateful to Prof. Ferdi Schuth for the provision of lab facilities and support throughout the project. Funding from the Spanish Ministry of Science, Innovation and Universities (projects SEV 2016-0683 and RTI2018-096399-A-100) is also acknowledged.Sarma, BB.; Plessow, PN.; Agostini, G.; Concepción Heydorn, P.; Pfänder, N.; Kang, L.; Wang, FR.... (2020). Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society. 142(35):14890-14902. https://doi.org/10.1021/jacs.0c03627S148901490214235Ruckenstein, E., & Hu, X. D. (1985). Mechanism of redispersion of supported metal catalysts in oxidative atmospheres. Langmuir, 1(6), 756-760. doi:10.1021/la00066a019Szymura, J. A. (1986). Studies on Redispersion and Stability of Platinum in Pt/MgO System during Oxygen Treatment at High Temperatures. Zeitschrift f�r anorganische und allgemeine Chemie, 542(11), 232-240. doi:10.1002/zaac.19865421130Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., … Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800Kunwar, D., Zhou, S., DeLaRiva, A., Peterson, E. J., Xiong, H., Pereira-Hernández, X. I., … Datye, A. K. (2019). Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 9(5), 3978-3990. doi:10.1021/acscatal.8b04885Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6Sarma, B. B., Kim, J., Amsler, J., Agostini, G., Weidenthaler, C., Pfänder, N., … Prieto, G. (2020). One‐Pot Cooperation of Single‐Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization‐Hydrosilylation Process. Angewandte Chemie International Edition, 59(14), 5806-5815. doi:10.1002/anie.201915255Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361mGates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881cWang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1Amsler, J., Sarma, B. B., Agostini, G., Prieto, G., Plessow, P. N., & Studt, F. (2020). Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society, 142(11), 5087-5096. doi:10.1021/jacs.9b12171Cui, X., Li, W., Ryabchuk, P., Junge, K., & Beller, M. (2018). Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 1(6), 385-397. doi:10.1038/s41929-018-0090-9Uzun, A., Ortalan, V., Browning, N. D., & Gates, B. C. (2010). A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy. Journal of Catalysis, 269(2), 318-328. doi:10.1016/j.jcat.2009.11.017Chen, Y., Ji, S., Sun, W., Chen, W., Dong, J., Wen, J., … Li, Y. (2018). Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 140(24), 7407-7410. doi:10.1021/jacs.8b03121Zhang, X., Sun, Z., Wang, B., Tang, Y., Nguyen, L., Li, Y., & Tao, F. F. (2018). C–C Coupling on Single-Atom-Based Heterogeneous Catalyst. Journal of the American Chemical Society, 140(3), 954-962. doi:10.1021/jacs.7b09314Chen, Z., Vorobyeva, E., Mitchell, S., Fako, E., Ortuño, M. A., López, N., … Pérez-Ramírez, J. (2018). A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 13(8), 702-707. doi:10.1038/s41565-018-0167-2Millet, M.-M., Algara-Siller, G., Wrabetz, S., Mazheika, A., Girgsdies, F., Teschner, D., … Frei, E. (2019). Ni Single Atom Catalysts for CO2 Activation. Journal of the American Chemical Society, 141(6), 2451-2461. doi:10.1021/jacs.8b11729Li, J., Guan, Q., Wu, H., Liu, W., Lin, Y., Sun, Z., … Lu, J. (2019). Highly Active and Stable Metal Single-Atom Catalysts Achieved by Strong Electronic Metal–Support Interactions. Journal of the American Chemical Society, 141(37), 14515-14519. doi:10.1021/jacs.9b06482Tang, Y., Wei, Y., Wang, Z., Zhang, S., Li, Y., Nguyen, L., … Hu, P. (2019). Synergy of Single-Atom Ni1 and Ru1 Sites on CeO2 for Dry Reforming of CH4. Journal of the American Chemical Society, 141(18), 7283-7293. doi:10.1021/jacs.8b10910Malta, G., Kondrat, S. A., Freakley, S. J., Davies, C. J., Lu, L., Dawson, S., … Hutchings, G. J. (2017). Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 355(6332), 1399-1403. doi:10.1126/science.aal3439Falsig, H., Hvolbæk, B., Kristensen, I. S., Jiang, T., Bligaard, T., Christensen, C. H., & Nørskov, J. K. (2008). Trends in the Catalytic CO Oxidation Activity of Nanoparticles. Angewandte Chemie International Edition, 47(26), 4835-4839. doi:10.1002/anie.200801479Latimer, A. A., Kulkarni, A. R., Aljama, H., Montoya, J. H., Yoo, J. S., Tsai, C., … Nørskov, J. K. (2016). Understanding trends in C–H bond activation in heterogeneous catalysis. Nature Materials, 16(2), 225-229. doi:10.1038/nmat4760Hensen, E. J. M., Brans, H. J. A., Lardinois, G. M. H. J., de Beer, V. H. J., van Veen, J. A. R., & van Santen, R. A. (2000). Periodic Trends in Hydrotreating Catalysis: Thiophene Hydrodesulfurization over Carbon-Supported 4d Transition Metal Sulfides. Journal of Catalysis, 192(1), 98-107. doi:10.1006/jcat.2000.2824Thornburg, N. E., Thompson, A. B., & Notestein, J. M. (2015). Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts for Alkene Epoxidation with H2O2. ACS Catalysis, 5(9), 5077-5088. doi:10.1021/acscatal.5b01105Yang, T., Fukuda, R., Hosokawa, S., Tanaka, T., Sakaki, S., & Ehara, M. (2017). A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M1
/γ-Al2
O3
(M=Pd, Fe, Co, and Ni). ChemCatChem, 9(7), 1222-1229. doi:10.1002/cctc.201601713Kropp, T., Lu, Z., Li, Z., Chin, Y.-H. C., & Mavrikakis, M. (2019). Anionic Single-Atom Catalysts for CO Oxidation: Support-Independent Activity at Low Temperatures. ACS Catalysis, 9(2), 1595-1604. doi:10.1021/acscatal.8b03298O’Connor, N. J., Jonayat, A. S. M., Janik, M. J., & Senftle, T. P. (2018). Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nature Catalysis, 1(7), 531-539. doi:10.1038/s41929-018-0094-5Tanaka, I., Oba, F., Tatsumi, K., Kunisu, M., Nakano, M., & Adachi, H. (2002). Theoretical Formation Energy of Oxygen-Vacancies in Oxides. MATERIALS TRANSACTIONS, 43(7), 1426-1429. doi:10.2320/matertrans.43.1426Therrien, A. J., Hensley, A. J. R., Marcinkowski, M. D., Zhang, R., Lucci, F. R., Coughlin, B., … Sykes, E. C. H. (2018). An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nature Catalysis, 1(3), 192-198. doi:10.1038/s41929-018-0028-2Lu, Y., Wang, J., Yu, L., Kovarik, L., Zhang, X., Hoffman, A. S., … Karim, A. M. (2018). Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nature Catalysis, 2(2), 149-156. doi:10.1038/s41929-018-0192-4Zhang, B., Asakura, H., & Yan, N. (2017). Atomically Dispersed Rhodium on Self-Assembled Phosphotungstic Acid: Structural Features and Catalytic CO Oxidation Properties. Industrial & Engineering Chemistry Research, 56(13), 3578-3587. doi:10.1021/acs.iecr.7b00376Wang, H., Liu, J.-X., Allard, L. F., Lee, S., Liu, J., Li, H., … Yang, M. (2019). Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 10(1). doi:10.1038/s41467-019-11856-9Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Plessow, P. N. (2018). Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans. Journal of Chemical Theory and Computation, 14(2), 981-990. doi:10.1021/acs.jctc.7b01070Hoffman, A. S., Debefve, L. M., Zhang, S., Perez-Aguilar, J. E., Conley, E. T., Justl, K. R., … Gates, B. C. (2018). Beating Heterogeneity of Single-Site Catalysts: MgO-Supported Iridium Complexes. ACS Catalysis, 8(4), 3489-3498. doi:10.1021/acscatal.8b00143Ren, Y., Tang, Y., Zhang, L., Liu, X., Li, L., Miao, S., … Zhang, T. (2019). Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-019-12459-0Gatla, S., Aubert, D., Agostini, G., Mathon, O., Pascarelli, S., Lunkenbein, T., … Kaper, H. (2016). Room-Temperature CO Oxidation Catalyst: Low-Temperature Metal–Support Interaction between Platinum Nanoparticles and Nanosized Ceria. ACS Catalysis, 6(9), 6151-6155. doi:10.1021/acscatal.6b00677Guan, H., Lin, J., Qiao, B., Yang, X., Li, L., Miao, S., … Zhang, T. (2016). Catalytically Active Rh Sub-Nanoclusters on TiO2
for CO Oxidation at Cryogenic Temperatures. Angewandte Chemie International Edition, 55(8), 2820-2824. doi:10.1002/anie.201510643Gaudet, J. R., de la Riva, A., Peterson, E. J., Bolin, T., & Datye, A. K. (2013). Improved Low-Temperature CO Oxidation Performance of Pd Supported on La-Stabilized Alumina. ACS Catalysis, 3(5), 846-855. doi:10.1021/cs400024uGänzler, A. M., Casapu, M., Doronkin, D. E., Maurer, F., Lott, P., Glatzel, P., … Grunwaldt, J.-D. (2019). Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO2 and Pt/Al2O3 by Spatially Resolved Structure–Activity Correlations. The Journal of Physical Chemistry Letters, 10(24), 7698-7705. doi:10.1021/acs.jpclett.9b02768Nie, L., Mei, D., Xiong, H., Peng, B., Ren, Z., Hernandez, X. I. P., … Wang, Y. (2017). Activation of surface lattice oxygen in single-atom Pt/CeO
2
for low-temperature CO oxidation. Science, 358(6369), 1419-1423. doi:10.1126/science.aao2109Carrasco, J., Lopez, N., Illas, F., & Freund, H.-J. (2006). Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. The Journal of Chemical Physics, 125(7), 074711. doi:10.1063/1.2335842Kropp, T., & Mavrikakis, M. (2019). Brønsted–Evans–Polanyi relation for CO oxidation on metal oxides following the Mars–van Krevelen mechanism. Journal of Catalysis, 377, 577-581. doi:10.1016/j.jcat.2019.08.002Martínez, J. I., Hansen, H. A., Rossmeisl, J., & Nørskov, J. K. (2009). Formation energies of rutile metal dioxides using density functional theory. Physical Review B, 79(4). doi:10.1103/physrevb.79.045120Soave, R., & Pacchioni, G. (2000). New bonding mode of CO on stepped MgO surfaces from density functional cluster model calculations. Chemical Physics Letters, 320(3-4), 345-351. doi:10.1016/s0009-2614(00)00246-3Sterrer, M., Risse, T., & Freund, H.-J. (2006). CO adsorption on the surface of MgO(001) thin films. Applied Catalysis A: General, 307(1), 58-61. doi:10.1016/j.apcata.2006.03.007Trionfetti, C., Babich, I. V., Seshan, K., & Lefferts, L. (2008). Presence of Lithium Ions in MgO Lattice: Surface Characterization by Infrared Spectroscopy and Reactivity towards Oxidative Conversion of Propane. Langmuir, 24(15), 8220-8228. doi:10.1021/la8006316Mihaylov, M. Y., Fierro-Gonzalez, J. C., Knözinger, H., Gates, B. C., & Hadjiivanov, K. I. (2006). Formation of Nonclassical Carbonyls of Au3+ in Zeolite NaY: Characterization by Infrared Spectroscopy. The Journal of Physical Chemistry B, 110(15), 7695-7701. doi:10.1021/jp057426qWang, C., Bley, B., Balzer-Jöllenbeck, G., Lewis, A. R., Siu, S. C., Willner, H., & Aubke, F. (1995). New homoleptic metal carbonyl cations: the syntheses, vibrational and13C MAS NMR spectra of hexacarbonyl-ruthenium(II) and-osmium(II) undecafluorodiantimonate(V), [Ru(CO)6][Sb2F11]2and [Os(CO)6][Sb2F11]2. J. Chem. Soc., Chem. Commun., (20), 2071-2072. doi:10.1039/c39950002071Fukuda, Y., & Tanabe, K. (1973). Infrared Study of Carbon Dioxide Adsorbed on Magnesium and Calcium Oxides. Bulletin of the Chemical Society of Japan, 46(6), 1616-1619. doi:10.1246/bcsj.46.1616Philipp, R., & Fujimoto, K. (1992). FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts. The Journal of Physical Chemistry, 96(22), 9035-9038. doi:10.1021/j100201a063Busca, G., & Lorenzelli, V. (1982). Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Materials Chemistry, 7(1), 89-126. doi:10.1016/0390-6035(82)90059-1Cornu, D., Guesmi, H., Krafft, J.-M., & Lauron-Pernot, H. (2012). Lewis Acido-Basic Interactions between CO2 and MgO Surface: DFT and DRIFT Approaches. The Journal of Physical Chemistry C, 116(11), 6645-6654. doi:10.1021/jp211171
Optical chemosensors and reagents to detect explosives
[EN] This critical review is focused on examples reported from 1947 to 2010 related to the design of chromo-fluorogenic chemosensors and reagents for explosives (141 references). © 2012 The Royal Society of Chemistry.Financial support from the Spanish Government (project MAT2009-14564-C04) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged. Y.S. is grateful to the Spanish Ministry of Science and Innovation for her grant.Salinas Soler, Y.; Martínez Mañez, R.; Marcos Martínez, MD.; Sancenón Galarza, F.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews. 41(3):1261-1296. https://doi.org/10.1039/c1cs15173hS12611296413Furton, K. (2001). The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta, 54(3), 487-500. doi:10.1016/s0039-9140(00)00546-4H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:33.0.co;2-7Walsh, M. (2001). Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta, 54(3), 427-438. doi:10.1016/s0039-9140(00)00541-5Sylvia, J. M., Janni, J. A., Klein, J. D., & Spencer, K. M. (2000). Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines. Analytical Chemistry, 72(23), 5834-5840. doi:10.1021/ac0006573Yinon, J. (1982). Mass spectrometry of explosives: Nitro compounds, nitrate esters, and nitramines. Mass Spectrometry Reviews, 1(3), 257-307. doi:10.1002/mas.1280010304Mathurin, J. C., Faye, T., Brunot, A., Tabet, J. C., Wells, G., & Fuché, C. (2000). High-Pressure Ion Source Combined with an In-Axis Ion Trap Mass Spectrometer. 1. Instrumentation and Applications. Analytical Chemistry, 72(20), 5055-5062. doi:10.1021/ac000171mHallowell, S. (2001). Screening people for illicit substances: a survey of current portal technology. Talanta, 54(3), 447-458. doi:10.1016/s0039-9140(00)00543-9Vourvopoulos, G. (2001). Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta, 54(3), 459-468. doi:10.1016/s0039-9140(00)00544-0Krausa, M., & Schorb, K. (1999). Trace detection of 2,4,6-trinitrotoluene in the gaseous phase by cyclic voltammetry. Journal of Electroanalytical Chemistry, 461(1-2), 10-13. doi:10.1016/s0022-0728(98)00162-4Steinfeld, J. I., & Wormhoudt, J. (1998). EXPLOSIVES DETECTION: A Challenge for Physical Chemistry. Annual Review of Physical Chemistry, 49(1), 203-232. doi:10.1146/annurev.physchem.49.1.203Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015aMartínez-Máñez, R., & Sancenón, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-zXu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368jNolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000qPallavicini, P., Diaz-Fernandez, Y. A., & Pasotti, L. (2009). Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coordination Chemistry Reviews, 253(17-18), 2226-2240. doi:10.1016/j.ccr.2008.11.010Que, E. L., & Chang, C. J. (2010). Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem. Soc. Rev., 39(1), 51-60. doi:10.1039/b914348nMohr, G. J. (2004). Tailoring the sensitivity and spectral properties of a chromoreactand for the detection of amines and alcohols. Analytica Chimica Acta, 508(2), 233-237. doi:10.1016/j.aca.2003.12.005Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eJ. P. Agrawal and R. D.Hodgson, Organic Chemistry of Explosives, John Wiley & Sons, Chichester, 2007, ISBN-13, 978, 0-470-02967-1, HBCumming, C. J., Aker, C., Fisher, M., Fok, M., la Grone, M. J., Reust, D., … Williams, V. (2001). Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1119-1128. doi:10.1109/36.927423Toal, S. J., & Trogler, W. C. (2006). Polymer sensors for nitroaromatic explosives detection. Journal of Materials Chemistry, 16(28), 2871. doi:10.1039/b517953jMcQuade, D. T., Pullen, A. E., & Swager, T. M. (2000). Conjugated Polymer-Based Chemical Sensors. Chemical Reviews, 100(7), 2537-2574. doi:10.1021/cr9801014Zhou, Q., & Swager, T. M. (1995). Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers. Journal of the American Chemical Society, 117(26), 7017-7018. doi:10.1021/ja00131a031Yang, J.-S., & Swager, T. M. (1998). Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials. Journal of the American Chemical Society, 120(21), 5321-5322. doi:10.1021/ja9742996Yang, J.-S., & Swager, T. M. (1998). Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. Journal of the American Chemical Society, 120(46), 11864-11873. doi:10.1021/ja982293qYamaguchi, S., & Swager, T. M. (2001). Oxidative Cyclization of Bis(biaryl)acetylenes: Synthesis and Photophysics of Dibenzo[g,p]chrysene-Based Fluorescent Polymers. Journal of the American Chemical Society, 123(48), 12087-12088. doi:10.1021/ja016692oZahn, S., & Swager, T. M. (2002). Three-Dimensional Electronic Delocalization in Chiral Conjugated Polymers. Angewandte Chemie International Edition, 41(22), 4225-4230. doi:10.1002/1521-3773(20021115)41:223.0.co;2-3Amara, J. P., & Swager, T. M. (2005). Synthesis and Properties of Poly(phenylene ethynylene)s with Pendant Hexafluoro-2-propanol Groups. Macromolecules, 38(22), 9091-9094. doi:10.1021/ma051562bZhao, D., & Swager, T. M. (2005). Sensory Responses in Solution vs Solid State: A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s. Macromolecules, 38(22), 9377-9384. doi:10.1021/ma051584yThomas III, S. W., Amara, J. P., Bjork, R. E., & Swager, T. M. (2005). Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). Chemical Communications, (36), 4572. doi:10.1039/b508408cNarayanan, A., Varnavski, O. P., Swager, T. M., & Goodson, T. (2008). Multiphoton Fluorescence Quenching of Conjugated Polymers for TNT Detection. The Journal of Physical Chemistry C, 112(4), 881-884. doi:10.1021/jp709662wChen, S., Zhang, Q., Zhang, J., Gu, J., & Zhang, L. (2010). Synthesis of two conjugated polymers as TNT chemosensor materials. Sensors and Actuators B: Chemical, 149(1), 155-160. doi:10.1016/j.snb.2010.06.007Long, Y., Chen, H., Yang, Y., Wang, H., Yang, Y., Li, N., … Liu, F. (2009). Electrospun Nanofibrous Film Doped with a Conjugated Polymer for DNT Fluorescence Sensor. Macromolecules, 42(17), 6501-6509. doi:10.1021/ma900756wChang, C.-P., Chao, C.-Y., Huang, J. H., Li, A.-K., Hsu, C.-S., Lin, M.-S., … Su, A.-C. (2004). Fluorescent conjugated polymer films as TNT chemosensors. Synthetic Metals, 144(3), 297-301. doi:10.1016/j.synthmet.2004.04.003Levitsky, I. A., Euler, W. B., Tokranova, N., & Rose, A. (2007). Fluorescent polymer-porous silicon microcavity devices for explosive detection. Applied Physics Letters, 90(4), 041904. doi:10.1063/1.2432247Chen, L., McBranch, D., Wang, R., & Whitten, D. (2000). Surfactant-induced modification of quenching of conjugated polymer fluorescence by electron acceptors: applications for chemical sensing. Chemical Physics Letters, 330(1-2), 27-33. doi:10.1016/s0009-2614(00)00970-2Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M., & Bulović, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876-879. doi:10.1038/nature03438Tamao, K., Uchida, M., Izumizawa, T., Furukawa, K., & Yamaguchi, S. (1996). Silole Derivatives as Efficient Electron Transporting Materials. Journal of the American Chemical Society, 118(47), 11974-11975. doi:10.1021/ja962829cSohn, H., Huddleston, R. R., Powell, D. R., West, R., Oka, K., & Yonghua, X. (1999). An Electroluminescent Polysilole and Some Dichlorooligosiloles. Journal of the American Chemical Society, 121(12), 2935-2936. doi:10.1021/ja983350iOhshita, J., & Kunai, A. (1998). Polymers with alternating organosilicon and π-conjugated units. Acta Polymerica, 49(8), 379-403. doi:10.1002/(sici)1521-4044(199808)49:83.0.co;2-zToal, S. J., Magde, D., & Trogler, W. C. (2005). Luminescent oligo(tetraphenyl)silole nanoparticles as chemical sensors for aqueous TNT. Chemical Communications, (43), 5465. doi:10.1039/b509404fSohn, H., Sailor, M. J., Magde, D., & Trogler, W. C. (2003). Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles. Journal of the American Chemical Society, 125(13), 3821-3830. doi:10.1021/ja021214eSanchez, J. C., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2007). Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tetraphenylsilole- and 1,1-Silafluorene-vinylene Polymers. Chemistry of Materials, 19(26), 6459-6470. doi:10.1021/cm702299gSanchez, J. C., Urbas, S. A., Toal, S. J., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2008). Catalytic Hydrosilylation Routes to Divinylbenzene Bridged Silole and Silafluorene Polymers. Applications to Surface Imaging of Explosive Particulates. Macromolecules, 41(4), 1237-1245. doi:10.1021/ma702274cSanchez, J. C., & Trogler, W. C. (2008). Efficient blue-emitting silafluorene–fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives. Journal of Materials Chemistry, 18(26), 3143. doi:10.1039/b802623hLiu, J., Zhong, Y., Lam, J. W. Y., Lu, P., Hong, Y., Yu, Y., … Tang, B. Z. (2010). Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives. Macromolecules, 43(11), 4921-4936. doi:10.1021/ma902432mLu, P., Lam, J. W. Y., Liu, J., Jim, C. K. W., Yuan, W., Xie, N., … Tang, B. Z. (2010). Aggregation-Induced Emission in a Hyperbranched Poly(silylenevinylene) and Superamplification in Its Emission Quenching by Explosives. Macromolecular Rapid Communications, 31(9-10), 834-839. doi:10.1002/marc.200900794Liu, Y., Mills, R. C., Boncella, J. M., & Schanze, K. S. (2001). Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics. Langmuir, 17(24), 7452-7455. doi:10.1021/la010696pToy, L. G., Nagai, K., Freeman, B. D., Pinnau, I., He, Z., Masuda, T., … Yampolskii, Y. P. (2000). Pure-Gas and Vapor Permeation and Sorption Properties of Poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules, 33(7), 2516-2524. doi:10.1021/ma991566eSaxena, A., Fujiki, M., Rai, R., & Kwak, G. (2005). Fluoroalkylated Polysilane Film as a Chemosensor for Explosive Nitroaromatic Compounds. Chemistry of Materials, 17(8), 2181-2185. doi:10.1021/cm048319wSaxena, A., Rai, R., Kim, S.-Y., Fujiki, M., Naito, M., Okoshi, K., & Kwak, G. (2006). Weak noncovalent Si···FC interactions stabilized fluoroalkylated rod-like polysilanes as ultrasensitive chemosensors. Journal of Polymer Science Part A: Polymer Chemistry, 44(17), 5060-5075. doi:10.1002/pola.21607Toal, S. J., Sanchez, J. C., Dugan, R. E., & Trogler, W. C. (2007). Visual Detection of Trace Nitroaromatic Explosive Residue Using Photoluminescent Metallole-Containing Polymers. Journal of Forensic Sciences, 52(1), 79-83. doi:10.1111/j.1556-4029.2006.00332.xStringer, R. C., Gangopadhyay, S., & Grant, S. A. (2010). Detection of Nitroaromatic Explosives Using a Fluorescent-Labeled Imprinted Polymer. Analytical Chemistry, 82(10), 4015-4019. doi:10.1021/ac902838cLi, J., Kendig, C. E., & Nesterov, E. E. (2007). Chemosensory Performance of Molecularly Imprinted Fluorescent Conjugated Polymer Materials. Journal of the American Chemical Society, 129(51), 15911-15918. doi:10.1021/ja0748027Bunte, G., Hürttlen, J., Pontius, H., Hartlieb, K., & Krause, H. (2007). Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Analytica Chimica Acta, 591(1), 49-56. doi:10.1016/j.aca.2007.02.014Zhang, X., & Jenekhe, S. A. (2000). Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions. Macromolecules, 33(6), 2069-2082. doi:10.1021/ma991913kHou, S., Ding, M., & Gao, L. (2003). Synthesis and Properties of Polyquinolines and Polyanthrazolines Containing Pyrrole Units in the Main Chain. Macromolecules, 36(11), 3826-3832. doi:10.1021/ma025768dKim, T. H., Kim, H. J., Kwak, C. G., Park, W. H., & Lee, T. S. (2006). Aromatic oxadiazole-based conjugated polymers with excited-state intramolecular proton transfer: Their synthesis and sensing ability for explosive nitroaromatic compounds. Journal of Polymer Science Part A: Polymer Chemistry, 44(6), 2059-2068. doi:10.1002/pola.21319Nie, H., Zhao, Y., Zhang, M., Ma, Y., Baumgarten, M., & Müllen, K. (2011). Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chem. Commun., 47(4), 1234-1236. doi:10.1039/c0cc03659eQin, A., Lam, J. W. Y., Tang, L., Jim, C. K. W., Zhao, H., Sun, J., & Tang, B. Z. (2009). Polytriazoles with Aggregation-Induced Emission Characteristics: Synthesis by Click Polymerization and Application as Explosive Chemosensors. Macromolecules, 42(5), 1421-1424. doi:10.1021/ma8024706Kumar, A., Pandey, M. K., Anandakathir, R., Mosurkal, R., Parmar, V. S., Watterson, A. C., & Kumar, J. (2010). Sensory response of pegylated and siloxanated 4,8-dimethylcoumarins: A fluorescence quenching study by nitro aromatics. Sensors and Actuators B: Chemical, 147(1), 105-110. doi:10.1016/j.snb.2010.02.004Nguyen, H. H., Li, X., Wang, N., Wang, Z. Y., Ma, J., Bock, W. J., & Ma, D. (2009). Fiber-Optic Detection of Explosives Using Readily Available Fluorescent Polymers. Macromolecules, 42(4), 921-926. doi:10.1021/ma802460qAlbert, K. J., & Walt, D. R. (2000). High-Speed Fluorescence Detection of Explosives-like Vapors. Analytical Chemistry, 72(9), 1947-1955. doi:10.1021/ac991397wGao, D., Wang, Z., Liu, B., Ni, L., Wu, M., & Zhang, Z. (2008). Resonance Energy Transfer-Amplifying Fluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT. Analytical Chemistry, 80(22), 8545-8553. doi:10.1021/ac8014356Fang, Q., Geng, J., Liu, B., Gao, D., Li, F., Wang, Z., … Zhang, Z. (2009). Inverted Opal Fluorescent Film Chemosensor for the Detection of Explosive Nitroaromatic Vapors through Fluorescence Resonance Energy Transfer. Chemistry - A European Journal, 15(43), 11507-11514. doi:10.1002/chem.200901488Geng, J., Liu, P., Liu, B., Guan, G., Zhang, Z., & Han, M.-Y. (2010). A Reversible Dual-Response Fluorescence Switch for the Detection of Multiple Analytes. Chemistry - A European Journal, 16(12), 3720-3727. doi:10.1002/chem.200902721Yang, J., Aschemeyer, S., Martinez, H. P., & Trogler, W. C. (2010). Hollow silica nanospheres containing a silafluorene–fluorene conjugated polymer for aqueous TNT and RDX detection. Chemical Communications, 46(36), 6804. doi:10.1039/c0cc01906bFeng, J., Li, Y., & Yang, M. (2010). Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT. Sensors and Actuators B: Chemical, 145(1), 438-443. doi:10.1016/j.snb.2009.12.056Tao, S., Shi, Z., Li, G., & Li, P. (2006). Hierarchically Structured Nanocomposite Films as Highly Sensitive Chemosensory Materials for TNT Detection. ChemPhysChem, 7(9), 1902-1905. doi:10.1002/cphc.200600185Tao, S., Yin, J., & Li, G. (2008). High-performance TNT chemosensory materials based on nanocomposites with bimodal porous structures. Journal of Materials Chemistry, 18(40), 4872. doi:10.1039/b802486cTao, S., Li, G., & Zhu, H. (2006). Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor. Journal of Materials Chemistry, 16(46), 4521. doi:10.1039/b606061gTao, S., & Li, G. (2007). Porphyrin-doped mesoporous silica films for rapid TNT detection. Colloid and Polymer Science, 285(7), 721-728. doi:10.1007/s00396-007-1643-7Yildirim, A., Budunoglu, H., Deniz, H., O. Guler, M., & Bayindir, M. (2010). Template-Free Synthesis of Organically Modified Silica Mesoporous Thin Films for TNT Sensing. ACS Applied Materials & Interfaces, 2(10), 2892-2897. doi:10.1021/am100568cLi, H., Wang, J., Pan, Z., Cui, L., Xu, L., Wang, R., … Jiang, L. (2011). Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J. Mater. Chem., 21(6), 1730-1735. doi:10.1039/c0jm02554bTao, S., Li, G., & Yin, J. (2007). Fluorescent nanofibrous membranes for trace detection of TNT vapor. Journal of Materials Chemistry, 17(26), 2730. doi:10.1039/b618122hNaddo, T., Che, Y., Zhang, W., Balakrishnan, K., Yang, X., Yen, M., … Zang, L. (2007). Detection of Explosives with a Fluorescent Nanofibril Film. Journal of the American Chemical Society, 129(22), 6978-6979. doi:10.1021/ja070747qContent, S., Trogler, W. C., & Sailor, M. J. (2000). Detection of Nitrobenzene, DNT, and TNT Vapors by Quenching of Porous Silicon Photoluminescence. Chemistry - A European Journal, 6(12), 2205-2213. doi:10.1002/1521-3765(20000616)6:123.0.co;2-aKang, J., Ding, L., Lü, F., Zhang, S., & Fang, Y. (2006). Dansyl-based fluorescent film sensor for nitroaromatics in aqueous solution. Journal of Physics D: Applied Physics, 39(23), 5097-5102. doi:10.1088/0022-3727/39/23/030Zhang, S., Lü, F., Gao, L., Ding, L., & Fang, Y. (2007). Fluorescent Sensors for Nitroaromatic Compounds Based on Monolayer Assembly of Polycyclic Aromatics. Langmuir, 23(3), 1584-1590. doi:10.1021/la062773sHe, G., Zhang, G., Lü, F., & Fang, Y. (2009). Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surfaces. Chemistry of Materials, 21(8), 1494-1499. doi:10.1021/cm900013fGoodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives. Analytical Chemistry, 73(9), 2004-2011. doi:10.1021/ac001347nHughes, A. D., Glenn, I. C., Patrick, A. D., Ellington, A., & Anslyn, E. V. (2008). A Pattern Recognition Based Fluorescence Quenching Assay for the Detection and Identification of Nitrated Explosive Analytes. Chemistry - A European Journal, 14(6), 1822-1827. doi:10.1002/chem.200701546Malashikhin, S., & Finney, N. S. (2008). Fluorescent Signaling Based on Sulfoxide Profluorophores: Application to the Visual Detection of the Explosive TATP. Journal of the American Chemical Society, 130(39), 12846-12847. doi:10.1021/ja802989vFocsaneanu, K.-S., & Scaiano, J. C. (2005). Potential analytical applications of differential fluorescence quenching: pyrene monomer and excimer emissions as sensors for electron deficient molecules. Photochemical & Photobiological Sciences, 4(10), 817. doi:10.1039/b505249aLee, Y. H., Liu, H., Lee, J. Y., Kim, S. H., Kim, S. K., Sessler, J. L., … Kim, J. S. (2010). Dipyrenylcalix[4]arene-A Fluorescence-Based Chemosensor for Trinitroaromatic Explosives. Chemistry - A European Journal, 16(20), 5895-5901. doi:10.1002/chem.200903439Jian, C., & Seitz, W. R. (1990). Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching. Analytica Chimica Acta, 237, 265-271. doi:10.1016/s0003-2670(00)83928-8Vijayakumar, C., Tobin, G., Schmitt, W., Kim, M.-J., & Takeuchi, M. (2010). Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency. Chemical Communications, 46(6), 874. doi:10.1039/b921520dZyryanov, G. V., Palacios, M. A., & Anzenbacher, P. (2008). Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT. Organic Letters, 10(17), 3681-3684. doi:10.1021/ol801030uCavaye, H., Shaw, P. E., Wang, X., Burn, P. L., Lo, S.-C., & Meredith, P. (2010). Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives. Macromolecules, 43(24), 10253-10261. doi:10.1021/ma102369qPonnu, A., & Anslyn, E. V. (2010). A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives. Supramolecular Chemistry, 22(1), 65-71. doi:10.1080/10610270903378032Zhang, C., Che, Y., Yang, X., Bunes, B. R., & Zang, L. (2010). Organic nanofibrils based on linear carbazole trimer for explosive sensing. Chemical Communications, 46(30), 5560. doi:10.1039/c0cc01258kLi, Z., Dong, Y. Q., Lam, J. W. Y., Sun, J., Qin, A., Häußler, M., … Tang, B. Z. (2009). Functionalized Siloles: Versatile Synthesis, Aggregation-Induced Emission, and Sensory and Device Applications. Advanced Functional Materials, 19(6), 905-917. doi:10.1002/adfm.20
- …