65 research outputs found
IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB- and PI3-kinase/Akt-dependent pathways
Recent studies of the pathogenesis of rheumatoid arthritis (RA) have revealed that both synovial fibroblasts and T cells participate in the perpetuation of joint inflammation as dynamic partners in a mutual activation feedback, via secretion of cytokines and chemokines that stimulate each other. In this study, we investigated the role of IL-17, a major Th1 cytokine produced by activated T cells, in the activation of RA synovial fibroblasts. Transcripts of IL-17R (IL-17 receptor) and IL-17RB (IL-17 receptor B) were present in fibroblast-like synoviocytes (FLS) of RA patients. IL-17R responded with increased expression upon in vitro stimulation with IL-17, while the level of IL-17RB did not change. IL-17 enhanced the production of IL-6 and IL-8 in FLS, as previously shown, but did not affect the synthesis of IL-15. IL-17 appears to be a stronger inducer of IL-6 and IL-8 than IL-15, and even exerted activation comparable to that of IL-1β in RA FLS. IL-17-mediated induction of IL-6 and IL-8 was transduced via activation of phosphatidylinositol 3-kinase/Akt and NF-κB, while CD40 ligation and p38 MAPK (mitogen-activated protein kinase) are not likely to partake in the process. Together these results suggest that IL-17 is capable of more than accessory roles in the activation of RA FLS and provide grounds for targeting IL-17-associated pathways in therapeutic modulation of arthritis inflammation
Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin
<p>Abstract</p> <p>Background</p> <p>Dimeric human erythropoietin (dHuEPO) peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg) mice expressing dHuEPO and to investigate the characteristics of these mice.</p> <p>Methods</p> <p>A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile), was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice.</p> <p>Results</p> <p>A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47) of tg mice expressing the <it>dHuEPO </it>gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11). We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females) were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764). Reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) were used for validating the results of the microarray analysis of mRNA expression.</p> <p>Conclusions</p> <p>In conclusion, dHuEPO tg mice caused excessive erythrocytosis that led to abnormal blood composition, short lifespan, and abnormal splenomegaly. Further, we identified 2,672 genes associated with splenomegaly by microarray analysis. These results could be useful in the development of dHuEPO-producing tg animals.</p
Effects of Hormones on the Expression of Matrix Metalloproteinases and Their Inhibitors in Bovine Spermatozoa
Proteases and protease inhibitors play key roles in most physiological processes, including cell migration, cell signaling, and cell surface and tissue remodeling. Among these, the matrix metalloproteinase (MMPs) pathway is one of the most efficient biosynthetic pathways for controlling the activation of enzymes responsible for protein degradation. This also indicates the association of MMPs with the maturation of spermatozoa. In an attempt to investigate the effect of MMP activation and inhibitors in cultures with various hormones during sperm capacitation, we examined and monitored the localization and expression of MMPs (MMP-2 and MMP-9), tissue inhibitors of metalloproteinases (TIMP-2 and TIMP-3), as well as their expression profiles. Matured spermatozoa were collected from cultures with follicle-stimulating hormone (FSH), luteinizing hormone (LH), and Lutalyse at 1 h, 6 h, 18 h, and 24 h. ELISA detected the expression of MMP-2, MMP-9, TIMP-2, and TIMP-3 in all culture media, regardless of medium type (FSH-supplemented fertilization Brackett-Oliphant medium (FFBO), LH-supplemented FBO (LFBO), or Lutalyse-supplemented FBO (LuFBO)). TIMP-2 and TIMP-3 expression patterns decreased in LFBO and LuFBO. MMP-2 and MMP-9 activity in FBO and FFBO progressively increased from 1 h to 24 h but was not detected in LFBO and LuFBO. The localization and expression of TIMP-2 and TIMP-3 in sperm heads was also measured by immunofluorescence analysis. However, MMPs were not detected in the sperm heads. MMP and TIMP expression patterns differed according to the effect of various hormones. These findings suggest that MMPs have a role in sperm viability during capacitation. In conjunction with hormones, MMPs play a role in maintaining capacitation and fertilization by controlling extracellular matrix inhibitors of sperm
Attributable fraction of tobacco smoking on cancer using population-based nationwide cancer incidence and mortality data in Korea
Smoking is by far the most important cause of cancer that can be modified at the individual level. Cancer incidence and mortality rates in Korea are the highest among all Asian countries, and smoking prevalence in Korean men is one of the highest in developed countries. The purpose of the current study was to perform a systematic review and provide an evidence-based assessment of the burden of tobacco smoking-related cancers in the Korean population. Sex- and cancer-specific population-attributable fractions (PAF) were estimated using the prevalence of ever-smoking and second-hand smoking in 1989 among Korean adults, respectively, and the relative risks were estimated from the meta-analysis of studies performed in the Korean population for ever-smoking and in the Asian population for passive smoking. National cancer incidence data from the Korea Central Cancer Registry and national cancer mortality data from Statistics Korea for the year 2009 were used to estimate the cancer cases and deaths attributable to tobacco smoking. Tobacco smoking was responsible for 20,239 (20.9%) cancer incident cases and 14,377 (32.9%) cancer deaths among adult men and 1,930 (2.1%) cancer incident cases and 1,351 (5.2%) cancer deaths among adult women in 2009 in Korea. In men, 71% of lung cancer deaths, 55%-72% of upper aerodigestive tract (oral cavity, pharynx, esophagus and larynx) cancer deaths, 23% of liver, 32% of stomach, 27% of pancreas, 7% of kidney and 45% of bladder cancer deaths were attributable to tobacco smoking. In women the proportion of ever-smoking-attributable lung cancer was 8.1%, while that attributable to second-hand smoking among non-smoking women was 20.5%. Approximately one in three cancer deaths would be potentially preventable through appropriate control of tobacco smoking in Korean men at the population level and individual level. For Korean women, more lung cancer cases and deaths were attributable to second-hand than ever-smoking. Effective control programs against tobacco smoking should be further developed and implemented in Korea to reduce the smoking-related cancer burden
Induction of IL-10-producing CD4(+)CD25(+ )T cells in animal model of collagen-induced arthritis by oral administration of type II collagen
Induction of oral tolerance has long been considered a promising approach to the treatment of chronic autoimmune diseases, including rheumatoid arthritis (RA). Oral administration of type II collagen (CII) has been proven to improve signs and symptoms in RA patients without troublesome toxicity. To investigate the mechanism of immune suppression mediated by orally administered antigen, we examined changes in serum IgG subtypes and T-cell proliferative responses to CII, and generation of IL-10-producing CD4(+)CD25(+ )T-cell subsets in an animal model of collagen-induced arthritis (CIA). We found that joint inflammation in CIA mice peaked at 5 weeks after primary immunization with CII, which was significantly less in mice tolerized by repeated oral feeding of CII before CIA induction. Mice that had been fed with CII also exhibited increased serum IgG(1 )and decreased serum IgG(2a )as compared with nontolerized CIA animals. The T-cell proliferative response to CII was suppressed in lymph nodes of tolerized mice also. Production of IL-10 and of transforming growth factor-β from mononuclear lymphocytes was increased in the tolerized animals, and CD4(+ )T cells isolated from tolerized mice did not respond with induction of IFN-γ when stimulated in vitro with CII. We also observed greater induction of IL-10-producing CD4(+)CD25(+ )subsets among CII-stimulated splenic T cells from tolerized mice. These data suggest that when these IL-10-producing CD4(+)CD25(+ )T cells encounter CII antigen in affected joints they become activated to exert an anti-inflammatory effect
Expression of aldo-keto reductase family 1 member C1 (AKR1C1) gene in porcine ovary and uterine endometrium during the estrous cycle and pregnancy
<p>Abstract</p> <p>Background</p> <p>The aldo-keto reductase family 1 member C1 (AKR1C1) belongs to a superfamily of NADPH-dependent reductases that convert a wide range of substrates, including carbohydrates, steroid hormones, and endogenous prostaglandins. The 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) is a member of AKR family. The aims of this study were to determine its expression in the ovary and uterus endometrium during the estrous cycle and pregnancy.</p> <p>Methods</p> <p>Rapid amplification of cDNA ends (RACE) experiments were performed to obtain the 5' and 3' ends of the porcine <it>20alpha-HSD </it>cDNA. Reverse-transcriptase-PCR (RT-PCR), real-time PCR, northern blot analysis, and western blot analysis were performed to examine the expression of porcine 20alpha-HSD. Immunohistochemical analysis was also performed to determine the localization in the ovary.</p> <p>Results</p> <p>The porcine 20alpha-HSD cDNA is 957 bp in length and encodes a protein of 319 amino acids. The cloned cDNA was virtually the same as the porcine <it>AKR1C1 </it>gene (337 amino acids) reported recently, and only differed in the C-terminal region (the <it>AKR1C1 </it>gene has a longer C-terminal region than our sequence). The <it>20alpha-HSD </it>gene (from now on referred to as <it>AKR1C1</it>) cloned in this paper encodes a deletion of 4 amino acids, compared with the C-terminal region of <it>AKR1C1 </it>genes from other animals. Porcine AKR1C1 mRNA was expressed on day 5, 10, 12, 15 of the cycle and 0-60 of pregnancy in the ovary. The mRNA was also specifically detected in the uterine endometrium on day 30 of pregnancy. Western blot analysis indicated that the pattern of AKR1C1 protein in the ovary during the estrous cycle and uterus during early pregnancy was similar to that of <it>AKR1C1 </it>mRNA expression. The recombinant protein produced in CHO cells was detected at approximately 37 kDa. Immunohistochemical analysis also revealed that pig AKR1C1 protein was localized in the large luteal cells in the early stages of the estrous cycle and before parturition.</p> <p>Conclusions</p> <p>Our study demonstrated that AKR1C1 mRNA and protein are coordinately expressed in the luteal cell of ovary throughout the estrous cycle and in the uterus on day 30 of pregnancy. Thus, the porcine AKR1C1 gene might control important mechanisms during the estrous cycle.</p
Molecular characterization of bovine placental and ovarian 20α-hydroxysteroid dehydrogenase
The enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD) catalyzes the conversion of progesterone to its inactive form, 20α-hydroxyprogesterone. This enzyme plays a critical role in the regulation of luteal function in female mammals. In this study, we conducted the characterization and functional analyses of bovine 20α-HSD from placental and ovarian tissues. The nucleotide sequence of bovine 20α-HSD showed significant homology to that of goats (96%), humans (84%), rabbits (83%), and mice (81%). The mRNA levels increased gradually throughout the estrous cycle, the highest being in the corpus luteum (CL) 1 stage. Northern blot analysis revealed a 1.2 kb mRNA in the bovine placental and ovarian tissues. An antibody specific to bovine 20α-HSD was generated in a rabbit immunized with the purified, recombinant protein. Recombinant 20α-HSD protein produced in mammalian cells had a molecular weight of ∼37 kDa. Bacterially expressed bovine 20α-HSD protein showed enzymatic activity. The expression pattern of the 20α-HSD protein in the pre-parturition placenta and the CL1 stage of the estrous cycle was similar to the level of 20α-HSD mRNA expression. Immunohistochemical analysis also revealed that bovine 20α-HSD protein was intensively localized in the large luteal cells during the late estrous cycle
Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels
Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
- …