12 research outputs found

    Effect of projectile on incomplete fusion reactions at low energies

    Full text link
    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin state

    Incomplete fusion reactions at low energies in 13

    No full text
    Aiming to investigate the incomplete fusion processes at low projectile energies, experiments have been carried out for the 13C + 169Tm system at ≈ 4-7 MeV/A. Excitation functions for several heavy residues likely to be populated via complete and incomplete fusion processes have been measured using heavy recoil residue catcher technique followed by γ- ray spectroscopy. The measured cross-sections for the complete fusion (xn and pxn) channels are compared with the statistical model code PACE4, consistently using the same set of parameters. The complete fusion channels are found to be consistent with the model calculations. However, the cross-sections for all the measured α-emitting channels are found to be significantly enhanced over the calculations. Analysis of data indicate a significant fraction of incomplete fusion even at energies as low as 17% above barrier. The present results are discussed in light of the Morgenstern’s systematics. Incomplete fusion strength function is found to be relatively large for alpha cluster projectile i.e. for 12C as compared to one neutron excess 13C projectile
    corecore