5,237 research outputs found
Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3.
Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li2.15(3)Os0.85(3)O3 (C2/c, a = 5.09 Å, b = 8.81 Å, c = 9.83 Å, β = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment of 0.85 μB, much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T(0.63±0.06). Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)-Os(5+) mixed valence. This local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state
Does aspirin or non-aspirin non-steroidal anti-inflammatory drug use prevent colorectal cancer in inflammatory bowel disease?
AIM: To determine whether aspirin or non-aspirin non-steroidal anti-inflammatory drugs (NA-NSAIDs) prevent colorectal cancer (CRC) in patients with inflammatory bowel disease (IBD). METHODS: We performed a systematic review and meta-analysis. We searched for articles reporting the risk of CRC in patients with IBD related to aspirin or NA-NSAID use. Pooled odds ratios (OR) and 95%CIs were determined using a random-effects model. Publication bias was assessed using Funnel plots and Egger’s test. Heterogeneity was assessed using Cochran’s Q and the I2 statistic. RESULTS: Eight studies involving 14917 patients and 3 studies involving 1282 patients provided data on the risk of CRC in patients with IBD taking NA-NSAIDs and aspirin respectively. The pooled OR of developing CRC after exposure to NA-NSAIDs in patients with IBD was 0.80 (95%CI: 0.39-1.21) and after exposure to aspirin it was 0.66 (95%CI: 0.06-1.39). There was significant heterogeneity (I2 > 50%) between the studies. There was no change in the effect estimates on subgroup analyses of the population studied or whether adjustment or matching was performed. CONCLUSION: There is a lack of high quality evidence on this important clinical topic. From the available evidence NA-NSAID or aspirin use does not appear to be chemopreventative for CRC in patients with IBD
Self-Similar Dynamical Relaxation of Dark Matter Halos in an Expanding Universe
We investigate the structure of cold dark matter halos using advanced models
of spherical collapse and accretion in an expanding Universe. These base on
solving time-dependent equations for the moments of the phase-space
distribution function in the fluid approximation; our approach includes
non-radial random motions, and most importantly, an advanced treatment of both
dynamical relaxation effects that takes place in the infalling matter:
phase-mixing associated to shell crossing, and collective collisions related to
physical clumpiness. We find self-similar solutions for the
spherically-averaged profiles of mass density rho(r), pseudo phase-space
density Q(r) and anisotropy parameter beta(r). These profiles agree with the
outcomes of state-of-the-art N-body simulations in the radial range currently
probed by the latter; at smaller radii, we provide specific predictions. In the
perspective provided by our self-similar solutions we link the halo structure
to its two-stage growth history, and propose the following picture. During the
early fast collapse of the inner region dominated by a few merging clumps,
efficient dynamical relaxation plays a key role in producing a closely
universal mass density and pseudo phase-space density profiles; in particular,
these are found to depend only weakly on the detailed shape of the initial
perturbation and the related collapse times. The subsequent inside-out growth
of the outer regions feeds on the slow accretion of many small clumps and
diffuse matter; thus the outskirts are only mildly affected by dynamical
relaxation but are more sensitive to asymmetries and cosmological variance.Comment: 31 pages, 16 figures. Typos corrected. Accepted by Ap
Gravitational collapse in an expanding background and the role of substructure II: Excess power at small scales and its effect of collapse of structures at larger scales
We study the interplay of clumping at small scales with the collapse and
relaxation of perturbations at larger scales using N-Body simulations. We
quantify the effect of collapsed haloes on perturbations at larger scales using
two point correlation function, moments of counts in cells and mass function.
The purpose of the study is twofold and the primary aim is to quantify the role
played by collapsed low mass haloes in the evolution of perturbations at large
scales, this is in view of the strong effect seen when the large scale
perturbation is highly symmetric. Another reason for this study is to ask
whether features or a cutoff in the initial power spectrum can be detected
using measures of clustering at scales that are already non-linear. The final
aim is to understand the effect of ignoring perturbations at scales smaller
than the resolution of N-Body simulations. We find that these effects are
ignorable if the scale of non-linearity is larger than the average
inter-particle separation in simulations. Features in in the initial power
spectrum can be detected easily if the scale of these features is in the linear
regime, detecting such features becomes difficult as the relevant scales become
non-linear. We find no effect of features in initial power spectra at small
scales on the evolved power spectra at large scales. We may conclude that in
general, the effect on evolution of perturbations at large scales of clumping
on small scales is very small and may be ignored in most situations.Comment: Accepted for publication in MNRA
Galactic cannibalism and CDM density profiles
Using N-body simulations we show that the process of formation of the
brightest cluster galaxy through dissipationless galactic cannibalism can
affect the inner cluster dark matter density profile. In particular, we use as
realistic test case the dynamical evolution of the galaxy cluster C0337-2522 at
redshift z=0.59, hosting in its centre a group of five elliptical galaxies
which are likely to be the progenitor of a central giant elliptical. After the
formation of the brightest cluster galaxy, the inner cluster dark matter
density profile is significantly flatter (logarithmic slope 0.49<beta<0.90)
than the original cusp (beta=1), as a consequence of dynamical friction heating
of the massive galaxies against the diffuse cluster dark matter. In our
simulations we have assumed that the cluster galaxies are made of stars only.
We also show that the presence of galactic dark matter haloes can steepen the
cluster central density profile. We conclude that galactic cannibalism could be
a viable physical mechanism to reconcile - at least at the cluster scale - the
flat dark matter haloes inferred observationally in some galaxy clusters with
the steep haloes predicted by cosmological simulations.Comment: 6 pages with 3 figures. Version accepted for publication in MNRAS.
Longer than first version, with results from additional simulations.
Conclusions unchange
Microwave Background Signals from Tangled Magnetic Fields
An inhomogeneous cosmological magnetic field will create Alfven-wave modes
that induce a small rotational velocity perturbation on the last scattering
surface of the microwave background radiation. The Alfven-wave mode survives
Silk damping on much smaller scales than the compressional modes. This, in
combination with its rotational nature, ensures that there will be no sharp
cut-off in anisotropy on arc-minute scales. We estimate that a magnetic field
which redshifts to a present value of Gauss produces
temperature anisotropies at the 10 micro Kelvin level at and below 10 arc-min
scales. A tangled magnetic field, which is large enough to influence the
formation of large scale structure is therefore potentially detectable by
future observations.Comment: 5 pages, Revtex, no figure
Testing Cold Dark Matter Models At Moderate to High Redshift
The COBE microwave background temperature fluctuations and the abundance of
local rich clusters of galaxies provide the two most powerful constraints on
cosmological models. When all variants of the standard cold dark matter (CDM)
model are subject to the combined constraint, the power spectrum of any model
is fixed to accuracy in both the shape and overall amplitude. These
constrained models are not expected to differ dramatically in their local
large-scale structure properties. However, their evolutionary histories differ,
resulting in dramatic differences towards high redshift. We examine in detail
six standardized, COBE and cluster normalized CDM models with respect to a
large set of independent observations. The observations include correlation
function of rich clusters of galaxies, galaxy power spectrum, evolution of rich
cluster abundance, gravitational lensing by moderate -to-high redshift
clusters, \lya forest, damped \lya systems, high redshift galaxies,
reionization of the universe and future CMB experiments. It seems that each of
the independent observations examined is or potentially is capable of
distinguishing between at least some of the models. The combined power of
several or all of these observations is tremendous. Thus, we appear to be on
the verge of being able to make dramatic tests of all models in the near future
using a rapidly growing set of observations, mostly at moderate to high
redshift. Consistency or inconsistency between different observed phenomena on
different scales and/or at different epochs with respect to the models will
have profound implications for theory of growth of cosmic structure.Comment: ApJ in press (1998), 26 emulateapj page
New Symmetries in Crystals and Handed Structures
For over a century, the structure of materials has been described by a
combination of rotations, rotation-inversions and translational symmetries. By
recognizing the reversal of static structural rotations between clockwise and
counterclockwise directions as a distinct symmetry operation, here we show that
there are many more structural symmetries than are currently recognized in
right- or left-handed handed helices, spirals, and in antidistorted structures
composed equally of rotations of both handedness. For example, though a helix
or spiral cannot possess conventional mirror or inversion symmetries, they can
possess them in combination with the rotation reversal symmetry. Similarly, we
show that many antidistorted perovskites possess twice the number of symmetry
elements as conventionally identified. These new symmetries predict new forms
for "roto" properties that relate to static rotations, such as rotoelectricity,
piezorotation, and rotomagnetism. They also enable symmetry-based search for
new phenomena, such as multiferroicity involving a coupling of spins, electric
polarization and static rotations. This work is relevant to structure-property
relationships in all material structures with static rotations such as
minerals, polymers, proteins, and engineered structures.Comment: 15 Pages, 4 figures, 3 Tables; Fig. 2b has error
The Local Group as a test of cosmological models
The dynamics of the Local Group and its environment provide a unique
challenge to cosmological models. The velocity field within 5h-1 Mpc of the
Local Group (LG) is extremely ``cold''. The deviation from a pure Hubble flow,
characterized by the observed radial peculiar velocity dispersion, is measured
to be about 60km/s. We compare the local velocity field with similarly defined
regions extracted from N-body simulations of Universes dominated by cold dark
matter (CDM). This test is able to strongly discriminate between models that
have different mean mass densities. We find that neither the Omega=1 (SCDM) nor
Omega=0.3 (OCDM) cold dark matter models can produce a single candidate Local
Group that is embedded in a region with such small peculiar velocities. For
these models, we measure velocity dispersions between 500-700km/s and
150-300km/s respectively, more than twice the observed value. Although both CDM
models fail to produce environments similar to those of our Local Group on a
scale of a few Mpc, they can give rise to many binary systems that have similar
orbital properties as the Milky Way--Andromeda system. The local,
gravitationally induced bias of halos in the CDM ``Local Group'' environment,
if defined within a sphere of 10 Mpc around each Local Group is about 1.5,
independent of Omega. No biasing scheme could reconcile the measured velocity
dispersions around Local Groups with the observed one. Identification of binary
systems using a halo finder (named Skid
(http://www-hpcc.astro.washington.edu/tools/DENMAX for a public version)) based
on local density maxima instead of a simple linking algorithm, gives a much
more complete sample. We show that a standard ``friend of friends'' algorithm
would miss 40% of the LG candidates present in the simulations.Comment: Latex file (19 pages) + 13 figures. Submitted to New Astronomy. Two
MPEG movies were not included. Also available (this time with the movies) at
http://www-hpcc.astro.washington.edu/faculty/fabio/index.htm
- …
