1,856 research outputs found

    Introducing Technology in Tasmanian Law: Acceptance of IT in the Courtroom Environment

    Get PDF
    The Tasmanian legal fraternity has been assumed to be technologically conservative and resistant to major ITenabled change. When electronic courtrooms were set up in Hobart for specific legal hearings, it was expected that participants would have a range of issues in accepting the technology. The degree of acceptance of the courtroom technologies, despite its intrusiveness, ineffective training and a lack of user preparation, suggests effective approaches to introducing change in the legal community

    The LSB Theorem Implies the KKM Lemma

    Get PDF
    No abstract provided in this article

    Ultrafast elemental and oxidation-state mapping of hematite by 4D electron microscopy

    Get PDF
    This work was supported by the Air Force Office of Scientific Research (FA9550-11-1-0055) in the Gordon and Betty Moore Center for Physical Biology at the California Institute of Technology.We describe a new methodology that sheds light on the fundamental electronic processes that occur at the subsurface regions of inorganic solid photocatalysts. Three distinct kinds of microscopic imaging are used that yield spatial, temporal and energy-resolved information. We also carefully consider the effect of photon-induced near-field electron microscopy (PINEM), first reported by Zewail et al. in 2009. The value of this methodology is illustrated by studying afresh a popular and viable photocatalyst, hematite, α-Fe2O3, that exhibits most of the properties required in a practical application. By employing high-energy electron-loss signals (of several hundred eV), coupled to femtosecond temporal resolution as well as ultrafast energy-filtered transmission electron microscopy in 4D, we have, inter alia, identified Fe4+ ions that have a lifetime of a few picoseconds, as well as associated photoinduced electronic transitions and charge transfer processes.PostprintPeer reviewe

    Moment-Fourier approach to ion parallel fluid closures and transport for a toroidally confined plasma

    Full text link
    A general method of solving the drift kinetic equation is developed for an axisymmetric magnetic field. Expanding a distribution function in general moments a set of ordinary differential equations are obtained. Successively expanding the moments and magnetic-field involved quantities in Fourier series, a set of linear algebraic equations is obtained. The set of full (Maxwellian and non-Maxwellian) moment equations is solved to express the density, temperature, and flow velocity perturbations in terms of radial gradients of equilibrium pressure and temperature. Closure relations that connect parallel heat flux density and viscosity to the radial gradients and parallel gradients of temperature and flow velocity, are also obtained by solving the non-Maxwellian moment equations. The closure relations combined with the linearized fluid equations reproduce the same solution obtained directly from the full moment equations. The method can be generalized to derive closures and transport for an electron-ion plasma and a multi-ion plasma in a general magnetic field.Comment: 25 pages, 9 figure

    (4,7,13,16,21,24-Hexaoxa-1,10-diaza­bicyclo­[8.8.8]hexa­cosa­ne)sodium perchlorate

    Get PDF
    The title compound, [Na(C18H36N2O6)]ClO4, was isolated and crystallized to understand more fully the ligand’s binding specificity to cations. The cation and anion reside at an inter­section of crystallographic twofold and threefold axes. The carbon atoms in the cation are disordered over two positions in a 3:2 ratio, and the anion is equally disordered over two positions. The geometries of the cation and anion are typical. The compound packs in alternating sheets of discrete cations and anions stacked along the c axis, separated by a distance equal to one-sixth the length of the c axis

    Bismuth coordination networks containing deferiprone: synthesis, characterisation, stability and antibacterial activity

    Get PDF
    A series of bismuth–dicarboxylate–deferiprone coordination networks have been prepared and structurally characterised. The new compounds have been demonstrated to release the iron overload drug deferiprone on treatment with PBS and have also been shown to have antibacterial activity against H. pylori

    Ionospheric response to the corotating interaction region-driven geomagnetic storm of October 2002

    Get PDF
    Unlike the geomagnetic storms produced by coronal mass ejections (CMEs), the storms generated by corotating interaction regions (CIRs) are not manifested by dramatic enhancements of the ring current. The CIR-driven storms are however capable of producing other phenomena typical for the magnetic storms such as relativistic particle acceleration, enhanced magnetospheric convection and ionospheric heating. This paper examines ionospheric plasma anomalies produced by a CIR-driven storm in the middle- and high-latitude ionosphere with a specific focus on the polar cap region. The moderate magnetic storm which took place on 14–17 October 2002 has been used as an example of the CIR-driven event. Four-dimensional tomographic reconstructions of the ionospheric plasma density using measurements of the total electron content along ray paths of GPS signals allow us to reveal the large-scale structure of storm-induced ionospheric anomalies. The tomographic reconstructions are compared with the data obtained by digital ionosonde located at Eureka station near the geomagnetic north pole. The morphology and dynamics of the observed ionospheric anomalies is compared qualitatively to the ionospheric anomalies produced by major CME-driven storms. It is demonstrated that the CIR-driven storm of October 2002 was able to produce ionospheric anomalies comparable to those produced by CME-driven storms of much greater Dst magnitude. This study represents an important step in linking the tomographic GPS reconstructions with the data from ground-based network of digital ionosondes

    Deconvolving the pre-Himalayan Indian margin – tales of crustal growth and destruction

    Get PDF
    The metamorphic core of the Himalaya is composed of Indian cratonic rocks with two distinct crustal affinities that are defined by radiogenic isotopic geochemistry and detrital zircon age spectra. One is derived predominantly from the Paleoproterozoic and Archean rocks of the Indian cratonic interior and is either represented as metamorphosed sedimentary rocks of the Lesser Himalayan Sequence (LHS) or as slices of the distal cratonic margin. The other is the Greater Himalayan Sequence (GHS) whose provenance is less clear and has an enigmatic affinity. Here we present new detrital zircon Hf analyses from LHS and GHS samples spanning over 1000 kilometers along the orogen that respectively show a striking similarity in age spectra and Hf isotope ratios. Within the GHS, the zircon age populations at 2800–2500 Ma, 1800 Ma, 1000 Ma and 500 Ma can be ascribed to various Gondwanan source regions; however, a pervasive and dominant Tonian age population (∼860–800 Ma) with a variably enriched radiogenic Hf isotope signature (εHf = 10 to -20) has not been identified from Gondwana or peripheral accreted terranes. We suggest this detrital zircon age population was derived from a crustal province that was subsequently removed by tectonic erosion. Substantial geologic evidence exists from previous studies across the Himalaya supporting the Cambro-Ordovician Kurgiakh Orogeny. We propose the tectonic removal of Tonian lithosphere occurred prior to or during this Cambro-Ordovician episode of orogenesis in a similar scenario as is seen in the modern Andean and Indonesian orogenies, wherein tectonic processes have removed significant portions of the continental lithosphere in a relatively short amount of time. This model described herein of the pre-Himalayan northern margin of Greater India highlights the paucity of the geologic record associated with the growth of continental crust. Although the continental crust is the archive of Earth history, it is vital to recognize the ways in which preservation bias and destruction of continental crust informs geologic models
    • …
    corecore