22 research outputs found

    Perspective and priorities for improvement of parathyroid hormone (PTH) measurement – A view from the IFCC Working Group for PTH

    Get PDF
    Parathyroid hormone (PTH) measurement in serum or plasma is a necessary tool for the exploration of calcium/phosphate disorders, and is widely used as a surrogate marker to assess skeletal and mineral disorders associated with chronic kidney disease (CKD), referred to as CKD-bone mineral disorders (CKD-MBD). CKD currently affects >10% of the adult population in the United States and represents a major health issue worldwide. Disturbances in mineral metabolism and fractures in CKD patients are associated with increased morbidity and mortality. Appropriate identification and management of CKD-MBD is therefore critical to improving clinical outcome. Recent increases in understanding of the complex pathophysiology of CKD, which involves calcium, phosphate and magnesium balance, and is also influenced by vitamin D status and fibroblast growth factor (FGF)-23 production, should facilitate such improvement. Development of evidence-based recommendations about how best to use PTH is limited by considerable method-related variation in results, of up to 5-fold, as well as by lack of clarity about which PTH metabolites these methods recognise. This makes it difficult to compare PTH results from different studies and to develop common reference intervals and/or decision levels for treatment. The implications of these method-related differences for current clinical practice are reviewed here. Work being undertaken by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) to improve the comparability of PTH measurements worldwide is also described

    Simulating Cardiac Fluid Dynamics in the Human Heart

    Full text link
    Cardiac fluid dynamics fundamentally involves interactions between complex blood flows and the structural deformations of the muscular heart walls and the thin, flexible valve leaflets. There has been longstanding scientific, engineering, and medical interest in creating mathematical models of the heart that capture, explain, and predict these fluid-structure interactions. However, existing computational models that account for interactions among the blood, the actively contracting myocardium, and the cardiac valves are limited in their abilities to predict valve performance, resolve fine-scale flow features, or use realistic descriptions of tissue biomechanics. Here we introduce and benchmark a comprehensive mathematical model of cardiac fluid dynamics in the human heart. A unique feature of our model is that it incorporates biomechanically detailed descriptions of all major cardiac structures that are calibrated using tensile tests of human tissue specimens to reflect the heart's microstructure. Further, it is the first fluid-structure interaction model of the heart that provides anatomically and physiologically detailed representations of all four cardiac valves. We demonstrate that this integrative model generates physiologic dynamics, including realistic pressure-volume loops that automatically capture isovolumetric contraction and relaxation, and predicts fine-scale flow features. None of these outputs are prescribed; instead, they emerge from interactions within our comprehensive description of cardiac physiology. Such models can serve as tools for predicting the impacts of medical devices or clinical interventions. They also can serve as platforms for mechanistic studies of cardiac pathophysiology and dysfunction, including congenital defects, cardiomyopathies, and heart failure, that are difficult or impossible to perform in patients

    Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: pediatric congenital heart disease conditions

    No full text
    Abstract Background The use of medical 3D printing (focusing on anatomical modeling) has continued to grow since the Radiological Society of North America’s (RSNA) 3D Printing Special Interest Group (3DPSIG) released its initial guideline and appropriateness rating document in 2018. The 3DPSIG formed a focused writing group to provide updated appropriateness ratings for 3D printing anatomical models across a variety of congenital heart disease. Evidence-based- (where available) and expert-consensus-driven appropriateness ratings are provided for twenty-eight congenital heart lesion categories. Methods A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with pediatric congenital heart disease indications. Each study was vetted by the authors and strength of evidence was assessed according to published appropriateness ratings. Results Evidence-based recommendations for when 3D printing is appropriate are provided for pediatric congenital heart lesions. Recommendations are provided in accordance with strength of evidence of publications corresponding to each cardiac clinical scenario combined with expert opinion from members of the 3DPSIG. Conclusions This consensus appropriateness ratings document, created by the members of the RSNA 3DPSIG, provides a reference for clinical standards of 3D printing for pediatric congenital heart disease clinical scenarios
    corecore