42 research outputs found

    The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information

    Get PDF
    The Candida Genome Database (CGD) is a new database that contains genomic information about the opportunistic fungal pathogen Candida albicans. CGD is a public resource for the research community that is interested in the molecular biology of this fungus. CGD curators are in the process of combing the scientific literature to collect all C.albicans gene names and aliases; to assign gene ontology terms that describe the molecular function, biological process, and subcellular localization of each gene product; to annotate mutant phenotypes; and to summarize the function and biological context of each gene product in free-text description lines. CGD also provides community resources, including a reservation system for gene names and a colleague registry through which Candida researchers can share contact information and research interests. CGD is publicly funded (by NIH grant R01 DE15873-01 from the NIDCR) and is freely available at http://www.candidagenome.org/

    Sequence resources at the Candida Genome Database

    Get PDF
    The Candida Genome Database (CGD, ) contains a curated collection of genomic information and community resources for researchers who are interested in the molecular biology of the opportunistic pathogen Candida albicans. With the recent release of a new assembly of the C.albicans genome, Assembly 20, C.albicans genomics has entered a new era. Although the C.albicans genome assembly continues to undergo refinement, multiple assemblies and gene nomenclatures will remain in widespread use by the research community. CGD has now taken on the responsibility of maintaining the most up-to-date version of the genome sequence by providing the data from this new assembly alongside the data from the previous assemblies, as well as any future corrections and refinements. In this database update, we describe the sequence information available for C.albicans, the sequence information contained in CGD, and the tools for sequence retrieval, analysis and comparison that CGD provides. CGD is freely accessible at and CGD curators may be contacted by email at [email protected]

    New tools at the Candida Genome Database: biochemical pathways and full-text literature search

    Get PDF
    The Candida Genome Database (CGD, http://www.candidagenome.org/) provides online access to genomic sequence data and manually curated functional information about genes and proteins of the human pathogen Candida albicans. Herein, we describe two recently added features, Candida Biochemical Pathways and the Textpresso full-text literature search tool. The Biochemical Pathways tool provides visualization of metabolic pathways and analysis tools that facilitate interpretation of experimental data, including results of large-scale experiments, in the context of Candida metabolism. Textpresso for Candida allows searching through the full-text of Candida-specific literature, including clinical and epidemiological studies

    Expanded protein information at SGD: new pages and proteome browser

    Get PDF
    The recent explosion in protein data generated from both directed small-scale studies and large-scale proteomics efforts has greatly expanded the quantity of available protein information and has prompted the Saccharomyces Genome Database (SGD; ) to enhance the depth and accessibility of protein annotations. In particular, we have expanded ongoing efforts to improve the integration of experimental information and sequence-based predictions and have redesigned the protein information web pages. A key feature of this redesign is the development of a GBrowse-derived interactive Proteome Browser customized to improve the visualization of sequence-based protein information. This Proteome Browser has enabled SGD to unify the display of hidden Markov model (HMM) domains, protein family HMMs, motifs, transmembrane regions, signal peptides, hydropathy plots and profile hits using several popular prediction algorithms. In addition, a physico-chemical properties page has been introduced to provide easy access to basic protein information. Improvements to the layout of the Protein Information page and integration of the Proteome Browser will facilitate the ongoing expansion of sequence-specific experimental information captured in SGD, including post-translational modifications and other user-defined annotations. Finally, SGD continues to improve upon the availability of genetic and physical interaction data in an ongoing collaboration with BioGRID by providing direct access to more than 82 000 manually-curated interactions

    The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community

    Get PDF
    The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at [email protected]

    Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome

    Get PDF
    Sequencing and annotation of the entire Saccharomyces cerevisiae genome has made it possible to gain a genome-wide perspective on yeast genes and gene products. To make this information available on an ongoing basis, the Saccharomyces Genome Database (SGD) () has created the Genome Snapshot (). The Genome Snapshot summarizes the current state of knowledge about the genes and chromosomal features of S.cerevisiae. The information is organized into two categories: (i) number of each type of chromosomal feature annotated in the genome and (ii) number and distribution of genes annotated to Gene Ontology terms. Detailed lists are accessible through SGD's Advanced Search tool (), and all the data presented on this page are available from the SGD ftp site ()

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource
    corecore