1,613 research outputs found

    Dysregulation of NAD+ metabolism induces a Schwann cell dedifferentiation program

    Get PDF
    The Schwann cell (SC) is the major component of the peripheral nervous system (PNS) that provides metabolic and functional support for peripheral axons. The emerging roles of SC mitochondrial function for PNS development and axonal stability indicate the importance of SC metabolism in nerve function and in peripheral neuropathies associated with metabolic disorders. Nicotinamide adenine dinucleotide (NA

    Detection of a Hot Gaseous Halo Around the Giant Spiral Galaxy NGC 1961

    Full text link
    Hot gaseous halos are predicted around all large galaxies and are critically important for our understanding of galaxy formation, but they have never been detected at distances beyond a few kpc around a spiral galaxy. We used the Chandra ACIS-I instrument to search for diffuse X-ray emission around an ideal candidate galaxy: the isolated giant spiral NGC 1961. We observed four quadrants around the galaxy for 30 ks each, carefully subtracting background and point source emission, and found diffuse emission that appears to extend to 40-50 kpc. We fit ÎČ\beta-models to the emission, and estimate a hot halo mass within 50 kpc of 5×109M⊙5\times10^9 M_{\odot}. When this profile is extrapolated to 500 kpc (the approximate virial radius), the implied hot halo mass is 1−3×1011M⊙1-3\times10^{11} M_{\odot}. These mass estimates assume a gas metallicity of Z=0.5Z⊙Z = 0.5 Z_{\odot}. This galaxy's hot halo is a large reservoir of gas, but falls significantly below observational upper limits set by pervious searches, and suggests that NGC 1961 is missing 75% of its baryons relative to the cosmic mean, which would tentatively place it below an extrapolation of the baryon Tully-Fisher relationship of less massive galaxies. The cooling rate of the gas is no more than 0.4 M⊙M_{\odot}/year, more than an order of magnitude below the gas consumption rate through star formation. We discuss the implications of this halo for galaxy formation models.Comment: 26 pages, 5 figures, accepted to ApJ. Updated to include journal ref and small changes added in proof

    FY18 E&G Budget Discussion

    Get PDF
    Presentation on the FY 2018 E&G Budget

    Observational Constraints on Superbubble X-ray Energy Budgets

    Full text link
    The hot, X-ray-emitting gas in superbubbles imparts energy and enriched material to the interstellar medium (ISM) and generates the hot ionized medium, the ISM's high-temperature component. The evolution of superbubble energy budgets is not well understood, however, and the processes responsible for enhanced X-ray emission in superbubbles remain a matter of debate. We present Chandra ACIS-S observations of two X-ray-bright superbubbles in the Large Magellanic Cloud (LMC), DEM L50 (N186) and DEM L152 (N44), with an emphasis on disentangling the true superbubble X-ray emission from non-related diffuse emission and determining the spatial origin and spectral variation of the X-ray emission. An examination of the superbubble energy budgets shows that on the order of 50% of the X-ray emission comes from regions associated with supernova remnant (SNR) impacts. We find some evidence of mass-loading due to swept-up clouds and metallicity enrichment, but neither mechanism provides a significant contribution to the X-ray luminosities. We also find that one of the superbubbles, DEM L50, is likely not in collisional ionization equilibrium. We compare our observations to the predictions of the standard Weaver et al. model and to 1-D hydrodynamic simulations including cavity supernova impacts on the shell walls. Our observations show that mass-loading due to thermal evaporation from the shell walls and SNR impacts are the dominant source of enhanced X-ray luminosities in superbubbles. These two processes should affect most superbubbles, and their contribution to the X-ray luminosity must be considered when determining the energy available for transport to the ISM.Comment: 25 pages, 11 figures, accepted for publication in Ap

    Furfuryl Alcohol Emulsion Resins as Co-Binders for Urea-Formaldehyde Resin-Bonded Particleboards

    Get PDF
    An approach to using water-insoluble furfuryl alcohol (FA) resins as a co-binder for particleboard (PB) urea-formaldehyde (UF) resins was evaluated. Sprayable FA/UF mixed resins were made by emulsifying FA resins of varying advancements and mixing with various formaldehyde to urea (F/U) ratio UF resins in various proportions. The binder performance of the mixed FA/UF resins was then evaluated by bonding laboratory PBs using a weakly acidic ordinary UF resin curing catalyst at various hot pressing temperatures. The PBs were also heat-treated and were aged for two years at room temperature. The test results of bond strengths and formaldehyde emission levels of PBs showed promising improvements at about 30% FA resin additions, although the results were preliminary due to the variable performance nature of such binder systems

    Chemical Abundances Of Open Clusters From High-Resolution Infrared Spectra. I. NGC 6940

    Full text link
    We present near-infrared spectroscopic analysis of 12 red giant members of the Galactic open cluster NGC 6940. High-resolution (R≃\simeq45000) and high signal-to-noise ratio (S/N > 100) near-infrared H and K band spectra were gathered with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m Smith Telescope at McDonald Observatory. We obtained abundances of H-burning (C, N, O), α{\alpha} (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 6940 for the first time. Many OH and CN features in the H band were used to obtain O and N abundances. C abundances were measured from four different features: CO molecular lines in the K band, high excitation C I lines present in both near-infrared and optical, CH and C2C_2 bands in the optical region. We have also determined 12C/13C^{12}C/^{13}C ratios from the R-branch band heads of first overtone (2-0) and (3-1) 12CO^{12}CO (2-0) 13CO^{13}CO lines near 23440 \overset{\lower.5em\circ}{\mathrm{A}} and (3-1) 13CO^{13}CO lines at about 23730 \overset{\lower.5em\circ}{\mathrm{A}}. We have also investigated the HF feature at 23358.3 \overset{\lower.5em\circ}{\mathrm{A}}, finding solar fluorine abundances without ruling out a slight enhancement. For some elements (such as the α{\alpha} group), IGRINS data yield more internally self-consistent abundances. We also revisited the CMD of NGC 6940 by determining the most probable cluster members using Gaia DR2. Finally, we applied Victoria isochrones and MESA models in order to refine our estimates of the evolutionary stages of our targets.Comment: 16 pages, 10 figure

    Identification of a Fundamental Transition in a Turbulently-Supported Interstellar Medium

    Full text link
    The interstellar medium in star-forming galaxies is a multiphase gas in which turbulent support is at least as important as thermal pressure. Sustaining this configuration requires continuous radiative cooling, such that the overall average cooling rate matches the decay rate of turbulent energy into the medium. Here we carry out a set of numerical simulations of a stratified, turbulently stirred, radiatively cooled medium, which uncover a fundamental transition at a critical one-dimensional turbulent velocity of ~ 35 km/s. At turbulent velocities below ~35 km/s, corresponding to temperatures below 300,000 K, the medium is stable, as the time for gas to cool is roughly constant as a function of temperature. On the other hand, at turbulent velocities above the critical value, the gas is shocked into an unstable regime in which the cooling time increases strongly with temperature, meaning that a substantial fraction of the interstellar medium is unable to cool on a turbulent dissipation timescale. This naturally leads to runaway heating and ejection of gas from any stratified medium with a one-dimensional turbulent velocity above ~35 km/s, a result that has implications for galaxy evolution at all redshifts.Comment: 16 Pages, 11 figures, ApJ, in pres

    A thorough study of the intriguing X-ray emission from the Cartwheel ring

    Full text link
    We present the results from the high resolution Chandra observation of the Cartwheel galaxy. Many individual sources are resolved in the image, mostly associated with the outer ring. All detected sources have a very high X-ray luminosity (≄1039\geq 10^{39} erg s−1^{-1})that classifies them as Ultra Luminous X-ray sources (ULX). The brightest of them is possibly the most luminous individual non-nuclear source observed so far, with LX∌1041_X \sim 10^{41} erg s−1^{-1} (at D=122 Mpc). The spatial extent of this source is consistent with a point source at the Chandra resolution. The luminosity function of individual X-ray sources extends about an order of magnitude higher than previously reported in other galaxies. We discuss this in the context of the "universal" luminosity function for High Mass X-ray Binaries and we derive a Star Formation Rate higher than in other starburst galaxies studied so far. A diffuse component, associated with hot gas, is present. However, deeper observations that we will obtain with XMM-Newton are needed to constrain its properties.Comment: 14 pages; accepted for publication in A&

    Aberrant Schwann Cell Lipid Metabolism Linked to Mitochondrial Deficits Leads to Axon Degeneration and Neuropathy

    Get PDF
    SummaryMitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells [SCs]) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy secondary to SC mitochondrial dysfunction (Tfam-SCKOs). We show that disruption of SC mitochondria activates a maladaptive integrated stress response (ISR) through the actions of heme-regulated inhibitor (HRI) kinase, and causes a shift in lipid metabolism away from fatty acid synthesis toward oxidation. These alterations in SC lipid metabolism result in depletion of important myelin lipid components as well as in accumulation of acylcarnitines (ACs), an intermediate of fatty acid ÎČ-oxidation. Importantly, we show that ACs are released from SCs and induce axonal degeneration. A maladaptive ISR as well as altered SC lipid metabolism are thus underlying pathological mechanisms in mitochondria-related peripheral neuropathies

    Hard Thermal Photon Production in Relativistic Heavy Ion Collisions

    Get PDF
    The recent status of hard thermal photon production in relativistic heavy ion collisions is reviewed and the current rates are presented with emphasis on corrected bremsstrahlung processes in the quark-gluon plasma (QGP) and quark-hadron duality. Employing Bjorken hydrodynamics with an EOS supporting the phase transition from QGP to hot hadron gas (HHG), thermal photon spectra are computed. For SPS 158 GeV Pb+Pb collisions, comparison with other theoretical results and the WA98 direct photon data indicates significant contributions due to prompt photons. Extrapolating the presented approach to RHIC and LHC experiments, predictions of the thermal photon spectrum show a QGP outshining the HHG in the high-pT-region.Comment: 20 pages with 8 figures. v3: Erratum to [Phys. Lett. B 510 (2001) 98] with correctly labeled Figs. 2, 4, and 5 adde
    • 

    corecore