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Neurobiology of Disease

Dysregulation of NAD� Metabolism Induces a Schwann Cell
Dedifferentiation Program

Yo Sasaki,* Amber R. Hackett,* X Sungsu Kim, Amy Strickland, and Jeffrey Milbrandt
Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110

The Schwann cell (SC) is the major component of the peripheral nervous system (PNS) that provides metabolic and functional support for
peripheral axons. The emerging roles of SC mitochondrial function for PNS development and axonal stability indicate the importance of
SC metabolism in nerve function and in peripheral neuropathies associated with metabolic disorders. Nicotinamide adenine dinucleotide
(NAD �) is a crucial molecule in the regulation of cellular metabolism and redox homeostasis. Here, we investigated the roles of NAD �

metabolism in SC functions in vivo by mutating NAMPT, the rate-limiting enzyme of NAD � biosynthesis, specifically in SCs. NAMPT SC
knock-out male and female mice (NAMPT SCKO mice) had delayed SC maturation in development and developed hypomyelinating
peripheral neuropathy without axon degeneration or decreased SC survival. JUN, a master regulator of SC dedifferentiation, is elevated in
NAMPT SCKO SCs, suggesting that decreased NAD � levels cause them to arrest at an immature stage. Nicotinic acid administration
rescues the NAD � decline and reverses the SC maturation defect and the development of peripheral neuropathy, indicating the central
role of NAD � in PNS development. Upon nicotinic acid withdrawal in adulthood, NAMPT SCKO mice showed rapid and severe peripheral
neuropathy and activation of ERK/MEK/JUN signaling, which in turn promotes SC dedifferentiation. These data demonstrate the impor-
tance of NAD � metabolism in SC maturation and nerve development and maintenance and suggest that altered SC NAD � metabolism
could underlie neuropathies associated with diabetes and aging.
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Introduction
The sciatic nerve contains two types of axons: large-diameter
myelinated axons and small nonmyelinated axons found in Re-

mak bundles. Myelinated axons are wrapped by multiple layers of
Schwann cell (SC) processes compacted into myelin. Each �1
mm segment of axon is myelinated by a single SC. In contrast,
multiple small-diameter axons are ensheathed by nonmyelinat-
ing SCs in Remak bundles where SC processes interdigitate be-
tween axons. In addition to insulating axons, recent reports have
begun to describe the emerging role of SCs in the metabolic sup-
port of axons (Nave, 2010; Feldman et al., 2017). This hypothesis
is supported by experimental models that disrupt metabolism in
SCs. For example, mitochondrial dysfunction induced by deple-
tion of COX10 or TFAM in SCs causes severe hypomyelination
and axonal loss (Viader et al., 2011, 2013; Fünfschilling et al.,
2012). Ablation of the central metabolic regulator LKB1 in SCs
results in demyelination and small-fiber axon degeneration (Bei-
rowski et al., 2014), and depletion of the metabolic/nutrient sens-

Received Nov. 3, 2017; revised May 21, 2018; accepted June 12, 2018.
Author contributions: Y.S. and A.R.H. wrote the first draft of the paper; Y.S., A.R.H., and J.M. edited the paper;

Y.S., A.R.H., and J.M. designed research; Y.S., A.R.H., S.K., and A.S. performed research; Y.S., A.R.H., A.S., and J.M.
analyzed data; Y.S., A.R.H., and J.M. wrote the paper.

This work was supported by the National Institutes of Health Grants R56NS099314 and R01AG013730 to J.M.,
Grant T32NS007205 to A.R.H., and Grant R01NS087632 to J.M. and Aaron DiAntonio, Foundation for Barnes Jewish
Hospital Cancer Frontier Fund and Siteman Cancer Center Grant to Aaron DiAntonio and J.M., and Hope Center Viral
Vectors Core at Washington University School of Medicine. We thank Viviana Gradinaru and Benjamin Dever-
man for the PHP.S plasmid; members of the J.M. laboratories; and Kimberly Kruse, Nina Panchenko, and
Rachel McClarney for experimental assistance.

Y.S. and J.M. may derive benefits from licensing agreements with ChromaDex and Disarm Therapeutics, which
provide any support for this work.

*Y.S. and A.R.H. contributed equally to this work.
Correspondence should be addressed to Dr. Yo Sasaki, Department of Genetics, Washington University School of

Medicine, St. Louis, MO 63110. E-mail: sasaki@wustl.edu.
DOI:10.1523/JNEUROSCI.3304-17.2018

Copyright © 2018 the authors 0270-6474/18/386546-17$15.00/0

Significance Statement

In this study, we showed that Schwann cell differentiation status is critically dependent on NAD � homeostasis. Aberrant regula-
tion of NAD � biosynthesis via NAMPT deletion results in a blockade of Schwann cell maturation during development and severe
peripheral neuropathy without significant axon loss. The phenotype can be rescued by supplementation with nicotinic acid;
however, withdrawal of nicotinic acid leads to Schwann cell dedifferentiation, myelination defects, and death. These results
provide new therapeutic possibilities for peripheral neuropathies associated with NAD � decline during aging or diabetes.
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ing protein OGT results in progressive demyelination and axon
loss (Kim et al., 2016). In these instances, abnormal SC metabo-
lism leads to axon degeneration in addition to direct effects on
SCs, suggesting that the effects of metabolic abnormalities asso-
ciated with diabetes or aging could be exerted at the SC level.

Myelinating and nonmyelinating SCs in the adult sciatic nerve
are originally derived from neural crest cells through two inter-
mediate stages: SC precursors and immature SCs, which develop
at E12-E13 and E13-E15, respectively, in mice (Jessen and Mir-
sky, 2005). This differentiation process is known to be controlled
by multiple transcription factors, including SOX10, NF�B,
SOX2, OCT6, YY1, NFATc4, NAB1/2, BRN2, and EGR2 (Krox-
20) (Salzer, 2008, 2015). Remarkably, fully mature SCs in adult
nerves are able to dedifferentiate into immature SCs after injury
and provide essential support for nerve regeneration. Afterward,
SCs once again differentiate into mature myelinating or nonmy-
elinating SCs to restore normal peripheral nerve function. In-
creased MEK and ERK signaling leading to increased JUN activity
is a key step in SC reprogramming in response to nerve injury
(Parkinson et al., 2008; Napoli et al., 2012; Cervellini et al., 2018).
Interestingly, JUN also inhibits EGR2 (Krox-20) (Parkinson et
al., 2008) leading to reduced expression of genes importation for
myelination. However, the signals upstream of ERK/JUN after
peripheral nervous system injury remain poorly understood.

The oxidized form of nicotinamide adenine dinucleotide
(NAD�) is an essential metabolite that regulates cellular redox
and protein modifications mediated by SIRTs, PARPs, and ARTs
(Imai and Guarente, 2014). Accordingly, NAMPT, the rate-
limiting enzyme of NAD� biosynthesis, is an essential enzyme
for various tissues. While homozygous knock-out of NAMPT is
embryonic lethal, conditional knock-out of NAMPT in adult
mice results in lethality within 10 d (Zhang et al., 2017). These
mice display severe intestinal deficits, visceral fat depletion, and
weight loss. Supporting its central role in cell physiology, cell
type-specific deletion of NAMPT has revealed important func-
tions for this enzyme in myocytes (Frederick et al., 2016), adi-
pocytes (Stromsdorfer et al., 2016), neural progenitors (Stein and
Imai, 2014), excitatory cortical neurons (Stein et al., 2014), and
photoreceptor cells (Lin et al., 2016).

NAMPT synthesizes nicotinamide mononucleotide (NMN)
from nicotinamide (Nam), and the NMN is converted to NAD�

by NMNAT enzymes. NMN can also be produced from nicotin-
amide riboside (NR) by NRK enzymes. In addition, NAD� can
be synthesized from nicotinic acid (NA). In this case, NAPRT syn-
thesizes NA mononucleotide (NaMN) from NA and NaMN is con-
verted to NA adenine dinucleotide (NaAD) by NMNAT enzymes.
The NaAD is then converted to NAD� by NAD� synthetase.
Among these pathways, NAMPT-mediated NAD� synthesis is the
dominant pathway in mammalian cells (Nikiforov et al., 2015). In
this study, we depleted NAMPT specifically in SCs to investigate the
roles of NAD� metabolism in peripheral nerve functions.

Materials and Methods
Animals. All animal experiments were performed under the direction of
institutional animal study guidelines at the Washington University in St.
Louis. All mice were of pure C57BL/6 genetic background, and both male
and female mice were used for all experiments. To generate mice with
SC-specific deletion of NAMPT (referred to as NAMPT SCKO or KO),
MPZ-Cre� (Feltri et al., 1999) mice were bred to NAMPTF/F mice in
which NAMPT exons 5 and 6 are flanked by loxP sites (Rongvaux et al.,
2008). NA (Sigma-Aldrich) was diluted to 300 mg/dl in water (Lukasova
et al., 2011) and provided to some groups of mice ad libitum. Littermate
controls (referred to as WT) consisted of NAMPTF/F:MPZ-Cre� mice
and NAMPTF/�:MPZ-Cre� mice.

Nerve electrophysiology. Compound muscle action potentials (CMAPs)
were acquired as previously described (Beirowski et al., 2011) using a
Viking Quest electromyography device (Nicolet). Mice were anesthetized;
then electrodes (stimulating: ankle or sciatic notch; recording: footpad) were
put into place. Supramaximal stimulation was used for CMAPs.

Western blot. Mice were anesthetized; then sciatic nerves segments
were obtained, and the epineurium was removed in ice-cold PBS; then
the nerves were frozen on dry ice and stored at �80°C. Sciatic nerves were
sonicated in ice-cold lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl,
10 mM EDTA, 10 mM NaF, 0.1% SDS, 1% Triton X-100, 1% deoxy-
cholate, 1% NP-40, and 100 mM PMSF with protease inhibitors, Roche
Diagnostics; and phosphatase inhibitors, Sigma-Aldrich). Lysates were
centrifuged at 12,000 � g for 20 min at 4°C, supernatant was collected,
and 10 –20 �g of protein was boiled for 5 min in sample buffer with
�-mercaptoethanol, loaded onto 10% SDS-PAGE gels, and then trans-
ferred onto nitrocellulose membranes. Membranes were blocked in the
blocking solution (Super Block T20, Thermo Fisher Scientific) and then
incubated with antibodies (Table 1) diluted in blocking solution. Mem-
branes were washed, incubated in species-appropriate secondary anti-
bodies (Cell Signaling Technology), and then developed using Western
Bright Quantum (Advansta). Band intensity was measured using ImageJ
(National Institutes of Health), normalized to �-actin or �-tubulin, and
then displayed as fold change relative to the average of the WT samples.

qPCR. Sciatic nerves were homogenized in Trizol (Thermo Fisher Sci-
entific); then RNA was extracted as described in the protocol. RNA was
reverse-transcribed using Quanta qScript (Quantabio), and then qPCR
was performed using SYBR Green Master Mix (Quantabio) in a Quant-
Studio 3 Real-Time PCR Machine (ABI). Ct values were obtained, nor-
malized to GAPDH, and then fold changes were calculated using the
��Ct method. Primers sequences are displayed in Table 2.

Nerve structural analysis using light and electron microscopy. Sciatic
nerves were processed as previously described (Geisler et al., 2016).
Nerves were fixed in 3% glutaraldehyde in 0.1 M PBS (Polysciences)

Table 1. Antibodies

Antigen (species) Catalog no. Dilution

NAMPT (rabbit) Bethyl A300-779A Western (1:1000)
MBP (rat) Millipore MAB386 Western (1:1000);

IHC (1:500)
�-Actin (mouse) Clone AC-74, Sigma-Aldrich A2228 Western (1:1000)
�-Rubulin (mouse) Clone B-5-1-2, Sigma-Aldrich T5168 Western (1:1000)
Jun (rabbit) Clone 60A8, Cell Signaling Technology

#9165
Western (1:1000);

IHC (1:300)
p-Mek (rabbit) Ser217/221 Clone 41G9, Cell Signaling Technology

#9154
Western (1:1000)

p-ERK (rabbit) Thr202/Tyr204 Cell Signaling Technology #4370 Western (1:2000)
MPZ (chicken) Aves PZO Western (1:1000);

IHC (1:500)
OCT6 (rabbit) Abcam ab31766 Western (1:1000)
ERK (rabbit) Cell Signaling Technology #4695 Western (1:2000)
CD68 (rat) Bio-Rad MCA1957 IHC (1:500)
Neurofilament 200 (NF200)

(rabbit)
Sigma-Aldrich N4142 IHC (1:500)

p75NTR (NGFR) (rabbit) Clone D4B3, Cell Signaling Technology
#8238

IHC (1:2000)

Table 2. qPCR primer sequences

Gene name Forward sequence Reverse sequence

NAMPT GACTCGTACAAGGTTACTCAC GTAGTTCCATCCTCTTTCGT
LGI4 GTGGATGCCTATGGTGAATGC GCCGACTCCCCAACAGTCT
MBP CCAGTAGTCCATTTCTTCAAGAACATT AGCTAAATCTGCTGAGGGACAGG
EGR2 AGGCCCCTTTGACCAGATGA AAGATGCCCGCACTCACAAT
BRN2 CAGCATAGACAAGATCGCAG AAACCAAACTCTCACCACCT
EGR1 CAAACTGGAGGAGATGATGCTG AAAGGACTCTGTGGTCAGGT
OCT6 CGCCAAGCAGTTCAAGCAA TTGAGCAGCGGTTTGAGCTT
JUN GAACTGCATAGCCAGAACAC GTTGAAGTTGCTGAGGTTGG
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overnight at 4°C, washed, then stained with 1% osmium tetroxide
(Sigma-Aldrich) overnight at 4°C. Nerves were then washed, dehydrated
in a serial gradient of ethanol from 50% to 100%. After dehydration,
nerves were incubated in 50% propylene oxide/50% ethanol, then 100%
propylene oxide. Subsequently, nerves were incubated in the Araldite
resin solution/propylene oxide solutions overnight in the following ra-
tios: 50:50, 70:30, 90:10, and then finally embedded in 100% Araldite
resin solution (Araldite: DDSA: DMP30; 12:9:1; Electron Microscopy
Sciences) and then baked overnight at 60°C. For the light microscope
analysis, semithin sections of 400 – 600 nm were then cut using Leica EM
UC7 Ultramicrotome and placed onto microscopy slides. For the elec-
tron microscopy study, 300 – 400 nm sections were collected onto copper
grids and then stained with uranyl acetate and lead citrate and imaged
with transmission electron microscopy (JEOL1200).

Axon labeling using adeno-associated virus (AAV). A modified AAV
virus was generated by transfecting HEK293T cells with the PHP.s (Chan
et al., 2017) capsid plasmid together with pAAV-hSyn-GFP and a helper
plasmid. The cell medium was collected 72 h later, and virus was purified
using the iodixanol gradient method. All viral preparation was per-
formed by the Hope Center Viral Vectors Core. The PHP.s plasmid was
provided under a Material Transfer Agreement. pAAV-hSyn-EGFP was a
gift from Bryan Roth (Addgene, plasmid #50465). The viral supernatant
(20 �l) was injected into the intrathecal space of P10 mouse pups. At age
P35, mice were anesthetized and then transcardially perfused with 20 ml
PBS followed by 4% PFA in PBS. Whole spinal columns were dissected
out and postfixed in 4% PFA in PBS overnight. The following day, dorsal
roots were dissected from the lumbar spinal cord, washed with PBS, and
then whole-mounted on slides with Vectashield. Three random fields
were imaged on a DMI 4000B confocal microscope (Leica Microsystems)
using a 40� oil objective and a DFC 7000-T camera (Leica Microsys-
tems) for each animal. Three-dimensional reconstructions were made
using Bitplane Imaris. The quantification of dilated axons was done by
using ImageJ (National Institutes of Health). The dilated structures (size
of 13–130 �m 2) of axons with higher fluorescence intensity (�20% of
maximum fluorescent intensity) in the confocal dorsal root images were
detected by a particle analyzer tool. The total axon area was determined
by the total number of fluorescently positive pixels. The content of dys-
trophic neurites was expressed as a percentage of area occupied by dilated
axons over total axons.

Toluidine blue staining and quantification. Slides were stained with 1%
toluidine blue solution (1% toluidine blue, 2% borax), washed with ac-
etone and xylene, and then mounted in Cytoseal XTL (Thermo Fisher
Scientific). Whole nerves were imaged at 20� magnification, and 3 ran-
dom fields were obtained using a 100� oil-immersion lens. All myelin-
ated axons were blindly counted per field, normalized to axons per
square millimeter, and then averaged between the 3 fields. Axons that
were demyelinated or showed myelin splitting, myelin infolding/out-
folding, or axon degeneration were considered aberrant axons. To deter-
mine G-ratio, 100� images were cropped into random fields, and axon
and fiber diameters for 120 axons per genotype (40 axons per mouse)
were calculated using ImageJ.

Immunohistochemistry. Sciatic nerves were fixed in 4% PFA in PBS for
1 h at room temperature and then placed in 30% sucrose in PBS over-
night at 4°C. Nerves were then embedded in OCT (Tissue-Tek), frozen
on dry ice, and then stored at �80°C. Longitudinal sections of 6 �m or
cross-sections of 20 �m were obtained using a cryostat and slides were
stored at �20°C. Slides were fixed in cold acetone, washed with PBS,
blocked with 5% normal goat serum in PBS with 0.3% Triton X-100, and
incubated in primary antibodies (Table 1) overnight with blocking buf-
fer. Slides were then washed, incubated in species appropriate secondary
antibodies (Jackson ImmunoResearch Laboratories), washed, and then
mounted in Vectashield with DAPI. Three random fields were imaged
per nerve for each animal using a DMI 4000B confocal microscope (Leica
Microsystems) with a 20� oil objective and DFC 7000-T camera (Leica
Microsystems).

TUNEL apoptosis detection. TUNEL was performed as previously de-
scribed with some modifications (Gavrieli et al., 1992; Hackett et al.,
2016). Slides prepared for immunohistochemistry were thawed then
postfixed with 4% PFA for 10 min at room temperature, washed thor-

oughly with PBS, incubated with 10 �g/ml proteinase K for 15 min at
37°C, then washed with PBS. A positive control slide was incubated in
DNase I (1 U/ml) for 1 h at 37°C, then washed with PBS. Slides were then
pretreated with TdT buffer (25 mM Tris-HCl, 200 mM sodium cacodylate,
0.25 mg/ml BSA, 1 mM cobalt chloride, Roche Diagnostics) at 37°C for 10
min. To perform end-labeling, TdT buffer was combined with terminal
deoxynucleotidyl transferase (Roche Diagnostics, 400 U/slide) and
Biotin-16-dUTP (Roche Diagnostics, 4 �M) and added to slides for 1 h at
37°C. Slides were thoroughly washed with PBS, then blocked for 30 min
with 5% normal goat serum in PBS with 0.3% Triton-X, then incubated
with Alexa-Fluor-conjugated streptavidin (Jackson ImmunoResearch
Laboratories) for 30 min at 37°C. Slides were washed, and then mounted
in Vectashield with DAPI. Three random fields were taken per nerve
using a DMI 4000B confocal microscope (Leica Microsystems) using a
20� objective and a DFC 7000-T camera (Leica Microsystems). The total
number of TUNEL � and DAPI � cells were quantified, normalized to
tissue area, and then averaged. All TUNEL � cells were DAPI �. In the
positive control slides (DNase-treated), all DAPI� nuclei were TUNEL�.

Mass spectroscopy. Mice were anesthetized; then sciatic nerves seg-
ments were obtained, the epineurium was removed in ice-cold PBS, and
then the nerves were frozen on dry ice and stored at �80°C. Metabolites
were extracted by homogenizing frozen sciatic nerves in 50% MeOH
(100 �l per nerve) using sonication and incubated 10 min on ice. The
homogenates were centrifuged (10,000 � g for 15 min), and the super-
natants containing small metabolites and the precipitates containing
proteins were collected. The metabolite-containing fractions were fur-
ther purified with chloroform (50 �l) extraction. The precipitates con-
taining proteins were solubilized by adding 0.1% SDS solution (100 �l
per nerve), and the protein content was determined using BCA protein
assay kit (Thermo Fisher Scientific). The aqueous phase (90 �l) was
lyophilized and stored at �20°C until analysis. Lyophilized samples were
reconstituted with 15 �l of 5 mM ammonium formate.

For SC metabolite assays, mouse SCs were cultured in 24 well plates
(Ratner et al., 2006). Briefly, E12.5 mouse DRG were enzymatically dis-
sociated in 0.25% trypsin, and then cultured in Neurobasal-containing
100 ng/ml NGF (Harlan) and 2% B27 (Invitrogen) in uncoated plastic
dishes. A week later, SC-axon networks were removed from the plate and
trypsinized. Isolated SCs were expanded in Neurobasal, B27, 5% FBS
culture media in PDL-coated plates. Cells were then washed with 0.9%
NaCl, and then metabolites were extracted with 50% MeOH (160 �l per
well). Metabolite-containing solutions were transferred to microcentri-
fuge tube, mixed with 50 �l chloroform, and then centrifuged (12,000 �
g for 15 min). The aqueous phase, which contained the metabolites (140
�l), was lyophilized and then reconstituted with 15 �l of 5 mM ammo-
nium formate. To measure total protein, cells left on the plate were
homogenized in 0.1% SDS (100 �l), and protein content was determined
using a BCA protein assay kit (Thermo Fisher Scientific). FK866 was
obtained from National Institute of Mental Health Chemical Synthesis
and Drug Supply Program (MH #F-901).

Samples and standard compounds (ATP, NAD �, NMN, NaAD) were
injected into reverse phase column (Atlantis T3, 2.1 � 150 mm, 3 �m;
Waters) at a flow rate of 0.15 ml/min with 5 mM ammonium formate for
mobile phase A and 100% methanol for mobile phase B (B). Metabolites
were eluted with gradients of 0%–70% of B from 0 to 10 min, 70% B from
10 to 15 min, 0% B from 16 to 20 min, using HPLC (1290, Agilent
Technologies). The metabolites were detected with a Triple Quad mass
spectrometer (6470 MassHunter; Agilent Technologies) under positive
ESI multiple reaction monitoring. Metabolites were quantified by the
MassHunter quantitative analysis tool (Agilent Technologies) with stan-
dard curves.

Alternative metabolite analysis targeting metabolites in the glycolysis
pathway was performed as instructed (Metabolomics dMRM Database
and Method, Agilent Technologies). Metabolites were extracted as de-
scribed above and chromatographically separated using a reverse phase
column (Zorbax RRHD Extend-C18, 2.1 � 150 mm, 1.8 �m, Agilent
Technologies) with mobile buffer A (3% MeOH, 10 mM tributylamine,
15 mM acetic acid) and 0%–99% gradient of buffer B (100% MeOH, 10
mM tributylamine, 15 mM acetic acid). Metabolites were analyzed by
mass spectrometer (6470, Agilent Technologies) using dynamic multiple
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reaction monitoring. The compound signatures, including retention
time and qualifying ions, are predetermined in the dynamic multiple
reaction monitoring database and data analysis tool automatically detect
these compounds. After filtering out low abundance metabolites (area
under curve �200), the relative amount of each metabolites was calcu-
lated and normalized by the amount of protein.

SC culture and in vitro differentiation. Primary rat SCs were cultured
from rat P1 sciatic nerves as previously described (Nagarajan et al., 2001).
For SC in vitro differentiation assays, SCs were initially seeded onto
collagen-coated 24-well plates (100,000 cells/well) in 10% FBS-DMEM
media supplemented with 2 �M forskolin and 20 �g/ml of bovine pitu-
itary extract. After 72 h, the medium was switched to 1% FBS-DMEM

media for 2 d, and then either DMSO or FK866 (100 nM) was added with
or without NMN (Sigma-Aldrich, 100 �M). For SC differentiation, the
cell-permeable cAMP analog 8-CPT-cAMP (Biolog, 250 �M) was added
16 h after FK/NMN addition, and RNA was collected 36 h after 8-CPT-
cAMP addition using Trizol (Thermo Fisher Scientific). qPCR was per-
formed as described in qPCR.

Experimental design and statistical analysis. Sample number (n) was
defined as the number of animals that were independently manipulated
and measured. No statistical evaluations were performed to predeter-
mine sample sizes, but our sample sizes are similar to those generally used
in the field. Generally, histology, Western, and qPCR assays were per-
formed in 3 or 4 mice, whereas behavior and electrophysiology tests were

Figure 1. SC-specific deletion of NAMPT leads to severe neuropathy. A, Western blot analysis of NAMPT expression and (B) quantification of fold change of NAMPT protein (normalized to�-tubulin) in sciatic
nerves of P21 WT and NAMPT SCKO mice. *p	0.0264, unpaired two-tailed Student’s t test (n	3 mice). C, NAD � levels (pmol) normalized to protein levels in sciatic nerves from P28 WT and NAMPT SCKO mice
were determined by LC-MS/MS. *p�0.01, unpaired two-tailed Student’s t test (n	4 mice). D, Characteristic hindlimb clasping in a NAMPT SCKO mouse at 1 month of age. E, Nerve conduction velocity of WT
and NAMPT SCKO mice at 35 d of age. *p�0.0001, unpaired two-tailed Student’s t test (n	6 or 7 mice). F, Quantification of CMAP peak amplitude after ankle and sciatic notch stimulation of WT and NAMPT
SCKO mice. *p	0.008, compared with WT at the ankle. #p	0.002, compared with WT at the sciatic notch using unpaired two-tailed Student’s t test (n	6 or 7 mice). G, Quantification of CMAP latency period
after ankle and sciatic notch stimulation of WT and NAMPT SCKO mice. *p 	 0.002, compared with WT at the ankle. #p 	 0.0002, compared with WT at the sciatic notch using unpaired two-tailed Student’s t
test (n 	 6 or 7 mice). H, Sample traces of CMAP recordings from the ankle and the sciatic notch in WT and NAMPT SCKO mice. Scale shown on the bottom left. I, Growth curves of WT and NAMPT SCKO mice
showing weight loss beginning at 1 month of age. Two-way ANOVA (F(8,94) 	 91.2, p � 0.0001 for time; F(8,94) 	 91.2, p � 0.0001 for genotype; F(2,94) 	 79.34, p � 0.0001 for interaction). *p � 0.0001,
multiple comparisons with Tukey’s post hoc test (n 	 4 – 6 mice). J, NAMPT SCKO mice die �40 d of age. Data are mean 
 SEM.
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performed with �5 animals per cohort because there is more inherent
variability between individual animals in these types of tests. Male and
female animals were used in all experiments. Statistics were performed
using Prism (GraphPad).

Results
NAMPT SCKO mice develop a severe peripheral neuropathy
NAMPT is the rate-limiting enzyme of NAD� biosynthesis and
plays pivotal roles in cellular metabolism. Recent studies suggest
the importance of SC metabolism in peripheral nerve develop-
ment and homeostasis (Viader et al., 2011; Beirowski et al., 2014;
Feldman et al., 2017). To further understand the role of SC me-
tabolism in peripheral nerve function, we decided to manipulate
SC NAD� metabolism by depleting NAMPT specifically in SCs
(NAMPT-SCKO). NAMPT SCKO was generated by mating mice
with a floxed NAMPT allele (Rongvaux et al., 2008) to mice ex-
pressing Cre recombinase under control of the MPZ promoter
(Feltri et al., 1999). These mice express Cre in SCs beginning at
E14, thus enabling gene deletion early in development. We con-
firmed that NAMPT protein levels were reduced in sciatic nerves
from NAMPT SCKO mice by Western blotting (Fig. 1A,B). Con-
sistent with the loss of NAMPT, NAD� levels were reduced in
NAMPT SCKO nerves at postnatal days 28 (P28) when compared
with those from WT (Fig. 1C). NAMPT SCKO mice displayed
characteristics of peripheral neuropathy, such as hindlimb clasp-
ing (Fig. 1D), and gait abnormalities (Movie 1) at �1 month of
age. Consistent with these observations, CMAPs showed a severe
loss in conduction velocity (Fig. 1E), decline in peak amplitude
(Fig. 1F,H), and an increase in latency (Fig. 1G,H). Surprisingly,
these mice started to lose weight �P25 and died �2 weeks later
(�P40) (Fig. 1 I, J). Together, these results show that NAMPT
loss in SCs causes a reduction in NAD� levels and severe periph-
eral neuropathy.

NAMPT SCKO mice have severe defects in radial sorting
and myelination
To investigate the cause of the severe peripheral neuropathy in
NAMPT SCKO mice, we studied the structure of WT and
NAMPT SCKO sciatic nerves in P0, P14, and P35 animals. Con-

sistent with the electrophysiology data, NAMPT SCKO mice had
significantly fewer myelinated axons at P14 and P35 (Fig. 2A–C). In
the myelinated axons that were present, the G-ratio was significantly
increased, indicating a reduction in myelin thickness, especially in
larger-diameter axons (Fig. 2D,E). In addition, there were clear de-
fects in the structure of Remak bundles in the NAMPT SCKO sciatic
nerve at P14, as highlighted by the presence of large-diameter axons
(�1 �m) that are normally sorted out of the Remak bundle by this
age, and by a lack of SC process interdigitation among axons (Fig.
2F). These results suggest that P14 NAMPT SCKO mice have an
early-stage radial sorting defect (delayed at Stage 1) (Feltri et al.,
2015). By P35, most large-diameter axons in the NAMPT SCKO
sciatic nerve have established a one-to-one relationship with SCs
(Fig. 2A); however, the Remak bundles show a lack of SC process
interdigitation between axons (Fig. 2F) and frequently contain
large-diameter axons, suggesting that radial sorting remains arrested
at Stage 4/5 (Feltri et al., 2015). These results suggest that hypomy-
elination and delayed radial sorting underlie the peripheral neurop-
athy in NAMPT SCKO mice.

To determine whether the reduction of properly myelinated
axons and delayed axonal sorting are due to a lack of proliferation
of SC progenitors, we counted the number of SC nuclei in P0
sciatic nerves (Fig. 2G,H). There were no significant differences
in the number of SC nuclei, suggesting that the defects arise from
their failure to sort axons properly and initiate (or complete)
myelination. The number of SC nuclei in WT and NAMPT
SCKO nerves were also similar at P14 and P35 (Fig. 2 I, J), sug-
gesting that SC death is not a factor in the abnormalities observed
in the NAMPT SCKO nerves. To investigate further, we per-
formed TUNEL staining in P35 WT and NAMPT SCKO mice.
While WT sciatic nerve showed no TUNEL� cells, a small num-
ber were TUNEL� (5.97 
 2.73 cells/mm 2, 0.8% of cells) in P35
NAMPT SCKO. These changes did not lead to a significant de-
crease in the number of DAPI� nuclei at P35 (WT: 598 
 49
cells/mm 2; SCKO: 796 
 97 cells/mm 2). These data indicate that
there is a minimal increase in SC death in NAMPT SCKO nerves.
Overall, these results suggest that loss of NAMPT alters the SC
maturation processes but does not significantly affect their pro-
liferation or survival.

In an attempt to understand mechanisms underlying hypo-
myelination and radial sorting defects in NAMPT SCKO, we an-
alyzed mRNA expression of a panel of genes related to SC
development at P35 in these nerves. We found that genes associ-
ated with SC maturity, MBP, EGR2 (Krox-20), and LGI4 were
downregulated, whereas genes whose expression is downregu-
lated in mature nerves, BRN2, EGR1, and OCT6 were highly
expressed (Fig. 3A,B). Interestingly, JUN, which is a major reg-
ulator of SC dedifferentiation, was dramatically upregulated in
these mutant nerves. Consistent with the mRNA expression pro-
files, reduced protein levels of MBP (Fig. 3C,D), and elevated
levels of OCT6 (Fig. 3C,E) and JUN (Fig. 3F,G) were observed.
We confirmed that the majority of JUN expression was present in
SCs and not in CD68� macrophages (Fig. 3H), suggesting that a
dedifferentiation program is activated in the SCs of NAMPT
SCKO mice. Supporting this notion, we saw increased expression
of NGFR (p75), a marker of immature SCs, in NAMPT SCKO
nerves (Fig. 3I). These data suggest that many SCs in NAMPT
SCKO mice are either arrested before full maturation or subse-
quently dedifferentiate after maturation.

To further investigate the causal role of NAD� decline in SC
differentiation, we used a SC in vitro differentiation assay. In this
paradigm, the addition of cell-permeable cAMP analog 8-CPT-
cAMP induces SCs to express the terminal differentiation marker

Movie 1. NAMPT SCKO mouse at 1 month of age. This mouse showed
hindlimb paralysis and gait defects.
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Figure 2. SC-specific deletion of NAMPT leads to improper SC development and myelination. A, Representative images of toluidine blue-stained semithin cross-sections from sciatic nerves of WT
and NAMPT SCKO mice at P14 or P35. Yellow arrow indicates aberrant myelin sheath. Blue arrow indicates a myelin-laden macrophage. Quantification of the number of myelinated axons per square
millimeter at (B) P14 (*p � 0.0001, n 	 3 mice) and (C) P35 ( p 	 0.0003, n 	 3 mice) with unpaired two-tailed Student’s t test in the sciatic nerves of WT and NAMPT SCKO mice. Average G-ratio
and G-ratio versus axon diameter at (D) P14 ( p 	 0.0427, n 	 3 mice) and (E) P35 ( p 	 0.0398, n 	 3 mice) with unpaired two-tailed Student’s t test. A total of (Figure legend continues.)
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EGR2 (Krox-20) (Bacallao and Monje, 2015). We manipulated
SC NAD� levels using a NAMPT-specific inhibitor FK866 (Has-
mann and Schemainda, 2003). We observed a significant reduc-
tion of NAD� in these FK866-treated SCs, which could be rescued
by the addition of NMN (an NAD� precursor downstream of
NAMPT) (Fig. 3J). Consistent with previous reports, we observed a
significant increase in EGR2 (Krox-20) expression after the applica-
tion of CPT-cAMP (Fig. 3K). Importantly, CPT-cAMP induced
EGR2 (Krox-20) expression was completely blocked by the presence
of FK866 and was rescued by addition of NMN (Fig. 3K). These
results strongly support the idea that the reduction of intracellular
NAD� causes an inhibition of SC differentiation.

In addition to inadequate myelination, aberrantly myelinated
fibers (Fig. 2A, yellow arrow) and naked axons were frequently
observed in P35 NAMPT SCKO nerves (Fig. 4A, yellow arrows).
Myelin-laden macrophages were also frequently observed (Figs.
2A, Fig. 4A, blue arrow) and the number of CD68� activated
macrophages were greatly increased in P35 NAMPT SCKO
nerves (Fig. 3H). These results suggest that the abnormalities
caused by SC NAD� depletion leads to increased immune cell
responses in NAMPT SCKO nerves.

Interestingly, we observed only minimal signs of axonal de-
generation in NAMPT SCKO mice at all ages examined. Occa-
sionally, degenerated axons, characterized by the presence of
enlarged organelles, were observed (Fig. 4A, red arrow), but this
was infrequent during the lifespan of NAMPT SCKO mice. To
investigate this further, we stained sciatic nerves with neurofila-
ment (NF200) and saw no obvious defects (data not shown).
Because it is difficult to assess axon continuity in tissue sections,
we decided to prelabel axons using AAV virus-expressing EGFP
driven by the human Synapsin promoter (AAV-Syn-EGFP). We
dissected dorsal roots from WT and NAMPT SCKO mice and
prepared whole-mounted them on slides. We acquired confocal z
stacks and could image �50 �m into the tissue, allowing us to
view trajectories of axons after reconstruction using Bitplane
Imaris. We occasionally observed dilated axons (Fig. 4B, white
arrows). The percentage of area occupied by dilated axons over
total axons was higher in NAMPT SCKO compared with WT:
0.50 
 1.87% in NAMPT SCKO and 0.14 
 0.33% in WT, p 	
0.003, two-tailed unpaired Student’s t test, n 	 323 in WT (n 	 3
mice) and 290 in NAMPT SCKO (n 	 3 mice); however, the
majority of axons remained intact in WT and NAMPT SCKO
nerves. Thus, it is likely that the peripheral neuropathy in NAMPT
SCKO is primarily due to the defects in radial sorting and myelina-
tion of axons by SCs rather than overt axon degeneration.

Because NAD� plays an important role in oxidative phosphory-
lation in the mitochondria, we hypothesized that there might be
mitochondrial damage in NAMPT SCKO mice. In previous studies
in which critical mitochondrial proteins were mutated in SCs, such
as TFAM and COX10, the mitochondria were swollen and had di-
ameters of �500 nm (Viader et al., 2011; Fünfschilling et al., 2012).
We therefore made similar mitochondrial measurements in P35
NAMPT SCKO sciatic nerves to assess their mitochondria; however,

no significant differences in SC mitochondrial density or diameter
were observed (Fig. 4E,F). We did detect a modest increase in the
density of mitochondria within the axons of these mutant nerves
(Fig. 4C), while no difference in axonal mitochondria diameter was
noted (Fig. 4D). Overall, NAMPT SCKO nerves did not show any
overt damage to mitochondria.

Dietary supplementation with NA rescues the NAMPT SCKO
peripheral nerve phenotype
NAD� levels decline in aged animals and in pathological condi-
tions, such as diabetes (Yoshino et al., 2011; Verdin, 2015); thus,
it is important to understand how NAD� levels affect nerve
maintenance in adulthood. To this end, we used dietary supple-
mentation in an attempt to rescue the developmental myelin
defects in NAMPT SCKO. Although the major mammalian
NAD� biosynthesis pathway uses Nam, the substrate of NAMPT,
animals can also produce NAD� from NA using an alternative
pathway involving the enzymes NAPRT, NMNAT, and NAD�

synthetase (Fig. 5A). We administered NA (300 mg/dl) in the
drinking water of the mothers during pregnancy and the perina-
tal period and directly to the progeny after weaning. Remarkably,
not only did NA supplementation extend the lifespan of NAMPT
SCKO mice (tested up to P62; Fig. 6A), it also resulted in sciatic
nerves with grossly normal morphology (Fig. 5B) and restored my-
elination (Fig. 5C), CMAP responses (Fig. 5D), and nerve conduc-
tion velocities (Fig. 6D). Most NAMPT SCKO nerve abnormalities
were completely reversed: the only exceptions were subtle changes in
the G-ratio of larger-diameter axons (Fig. 5C) and radial sorting
deficits (Fig. 5E). These results indicate that NAD� production us-
ing the alternative precursor NA was significant and sufficient to
reverse the deficits caused by NAMPT loss.

Withdrawal of NA from adult NAMPT SCKO mice leads to
rapidly progressive peripheral neuropathy
We next investigated whether the requirement for NAMPT in
SCs was only critical during development or whether it was also
necessary for nerve maintenance and proper function in adult-
hood. For this purpose, we acutely withdrew NA from P55 WT or
NAMPT SCKO mice that had been maintained on this dietary
supplement since conception (Fig. 6A). Interestingly, NAMPT
SCKO mice lost �4 g (�20%) of body weight and died within 7 d
after NA withdrawal, whereas WT mice showed no abnormalities
(Fig. 6A,C). After NA withdrawal, the NAMPT SCKO mice
showed a gradual decline in nerve conduction velocity (Fig. 6D)
and developed severe hindlimb paralysis (Fig. 6B; Movie 2).
Overall, NA withdrawal in adulthood recapitulated the behav-
ioral and neurological deficits observed during early develop-
ment in untreated NAMPT SCKO mice (Fig. 1), indicating that
maintaining NAD� levels in adulthood is critical for proper
nerve function.

To understand the underlying mechanism of the neurological
deficits observed in NAMPT SCKO mice after NA withdrawal, we
analyzed myelin structures in the sciatic nerve using light and
electron microscopy (Figs. 6, 7). In NAMPT SCKO mice, we
observed fewer properly myelinated axons (Fig. 6E,F) and an
increased number of aberrant fibers between 5 and 7 d after NA
withdrawal (Fig. 6E,G) without altering SC numbers (Fig. 6H).
These aberrant fibers had multiple types of abnormalities, includ-
ing myelin infoldings (Fig. 7A, blue arrow), interlamellar myelin
splitting (Fig. 7A, purple arrow), abnormal axo-glial junctions
(Fig. 7A, orange arrow), and abnormal SC cytoplasm at the outer
tongue (Fig. 7A, yellow arrows) that occasionally contained an
increased number of mitochondria (Fig. 7A, red arrow). To fur-

4

(Figure legend continued.) 120 axons were quantified for mice (n 	 3) of each genotype. F,
Electron microscopic images of a normal Remak bundle in WT sciatic nerve and unsorted bun-
dled axons in P14 and P35 NAMPT SCKO mice. SC cytoplasm is pseudo-colored light blue. G,
Representative images of toluidine blue-stained semithin cross-sections of sciatic nerves from
P0 WT and NAMPT SCKO mice. Quantification of the number of nuclei per square millimeter at
(H) P0, (I) P14, and (J) P35 in the sciatic nerves of WT and NAMPT SCKO mice. I, K, Average
G-ratio WT and NAMPT SCKO sciatic nerves at (I) P14 and (K) P35. H–J, No significant difference
with unpaired two-tailed Student’s t test (n 	 3 mice). Data are mean 
 SEM.
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Figure 3. Markers of SC maturity are aberrantly regulated in NAMPT SCKO mice. A, B, qPCR analysis of mRNAs from sciatic nerves of WT and NAMPT SCKO mice at 35 d of age. Individual unpaired
t tests for each gene with significance determined by the Sidak–Bonferroni method when � � 0.05, *p � 0.03 (n 	 3– 6). C, F, Western blot analysis and (D, E, G) quantification of fold change
of (C, D) MBP (*p � 0.0001, n 	 3) with Student’s two-tailed t test, (C, E) OCT6 (*p � 0.01, n 	 3) with Student’s two-tailed t test, and (F, G) JUN (*p � 0.007, n 	 3) with Student’s two-tailed
t test (normalized to �-actin or �-tubulin) in WT compared with NAMPT SCKO sciatic nerves at 1 month of age. H, Immunostaining of nuclei (DAPI, blue), macrophages (CD68, green), and JUN (red)
in longitudinal sections of dorsal roots of WT and NAMPT SCKO mice at P35. White arrows indicate Jun �CD68 � cells. I, Immunostaining of NGFR (p75) in WT and NAMPT SCKO sciatic nerves at 35 d
of age. n 	 3 or 4 mice. J, NAD � levels were measured in primary SCs treated with vehicle (DMSO), 100 nM FK866, and/or 100 �M NMN for 24 h in vitro. One-way ANOVA with multiple comparisons:
F(3,12) 	 254 (n 	 4). *p � 0.0001, compared with vehicle (DMSO). #p � 0.0001, compared with FK866 treatment alone by Tukey’s post hoc test. K, Primary SCs were treated with vehicle (DMSO)
or 100 nM Fk866 with or without 100 �M NMN for 16 h before addition of 250 �M CPT-cAMP. Cells were harvested 3 h after addition of CPT-cAMP. NS, Not significant from vehicle SCs. F(3,22) 	 28.38
and p � 0.0001 for drug treatments, F(1,22) 	 89.57 and p � 0.0001 for CPT-cAMP treatment, F(3,22) 	 9.577 and p 	 0.0003 for interaction (n 	 3 or 4) using two-way ANOVA with multiple
comparisons. *p � 0.001, comparing treatments with or without CPT-cAMP for each combination of drug treatments (solid vs checkered bars of each color) using Tukey’s post hoc test. Data are
mean 
 SEM.
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ther assess mitochondria damage, we
quantified the density and diameter of mi-
tochondria in WT and NAMPT SCKO
nerves, analyzing both SCs and axons at 0
versus 7 d after NA withdrawal. We saw
no significant differences in these mito-
chondrial parameters (Fig. 7B,C), sug-
gesting that mitochondrial damage is not
a major contributor to the dramatic neu-
rological phenotype of these mutant mice.

Similar to what we observed in P35
NAMPT SCKO nerves, we saw little cell
death after NA withdrawal. At 5 d after
NA withdrawal, only 1.8 
 0.9 cells/mm 2

(0.5% of cells) were TUNEL�. These
changes did not lead to a significant de-
crease in the number of DAPI� nuclei at
5 d after NA withdrawal (WT: 486 
 25
cells/mm 2; SCKO: 558 
 31 cells/mm 2).
Overall, these results suggest that SC
death is not a major contributor to the
phenotypes observed in NAMPT SCKO
mice after NA withdrawal.

To assess axonal damage in NAMPT
SCKO nerves after NA withdrawal, we ini-
tially quantified the density of nonmyeli-
nated axons in WT and NAMPT SCKO
nerves at 0, 5, and 7 d after NA with-
drawal. We saw a modest decrease in axon
density at 7 d after NA withdrawal (Fig.
7D), suggesting that nonmyelinated ax-
onal integrity may be modestly compro-
mised. To evaluate axonal integrity of
large-diameter axons, sciatic nerves were
stained with neurofilament NF200 (Fig.
7E). There were no obvious differences in
NF200 distribution between WT and
NAMPT SCKO sciatic nerves at 5 d after
NA withdrawal, suggesting the absence of
overt axonal degeneration.

Overall, these data strongly indicate
that the neurological deficits occurring
within days of NA withdrawal in NAMPT
SCKO adult mice are due to aberrant SC-
axon interactions and defective myelin
maintenance. These studies point to
the importance of maintaining adequate
NAD� levels in SCs in adulthood and
suggest that neuropathy in the elderly and
in diabetics could be associated with the
decrease in NAD� levels that occur in
these conditions.

Disruption of NAD � synthesis in
adulthood yields major
metabolic changes
To determine the metabolic consequences
of NA administration, we performed
metabolomics analysis using LC-MS/MS on sciatic nerves from
WT and NAMPT SCKO mice that were administered NA from
conception until death (0 d after NA withdrawal) or were killed
5 d after NA withdrawal. Because NAD� levels were comparable
between NAMPT SCKO and WT mice after NA supplementa-

tion, we can conclude that NA is sufficient to rescue NAD� levels
in NAMPT SCKO nerves (Fig. 8A). Withdrawal of NA resulted in
the reduction of nerve NAD� levels both in WT and NAMPT
SCKO due to an inactivation of NA-dependent NAD� synthesis.
Five days after NA withdrawal, NAD� levels in NAMPT SCKO

Figure 4. NAMPT SCKO does not induce severe axon degeneration. A, Most axons in NAMPT SCKO mice do not show obvious
signs of axon degeneration, but occasional fragmented axons were observed (red arrow). Naked axons (yellow arrows) and
myelin-laden macrophages (blue arrow) were frequently observed in NAMPT SCKO nerves. B, DRG neurons were infected with an
AAV virus-expressing EGFP driven by the Synapsin promoter. Images shown are whole-mounted dorsal roots. While almost all
axons were continuous, dilated axons were occasionally observed in NAMPT SCKO dorsal roots (white arrow). Mitochondria density
(C, D) and diameter (E, F) were measured for both axons (C, D) and SCs (E, F) in P35 WT and NAMPT SCKO sciatic nerves using
electron microscopic images. *p 	 0.02 (unpaired two-tailed Student’s t test). n 	 3 mice for all experiments in this figure. Data
are mean 
 SEM.
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nerves were significantly lower than WT because NAD� is pre-
dominantly synthesized from Nam using NAMPT (Fig. 8A).

As expected, the levels of NaAD (a metabolic intermediate in
NAD� synthesis from NA) were significantly higher in animals
supplemented with NA (Fig. 8B). Accordingly, NaAD levels de-
clined to undetectable levels within 5 d after NA withdrawal in
sciatic nerves from both WT and NAMPT SCKO mice (Fig. 8B).
Interestingly, NMN levels correlated with NAD�, increasing
upon NA administration and declining after NA withdrawal in both
WT and NAMPT SCKO nerves (Fig. 8C). This indicates the exis-
tence of an efficient salvage pathway that breaks down NAD� into
Nam, and then reincorporates Nam into NMN via NAMPT present
in the non-SC components of the nerve. Interestingly, ATP levels did
not change in response to NA supplementation or depletion in WT
or NAMPT SCKO nerves within the time frames examined (Fig.
8D). These results show that NA administration successfully re-
stored nerve NAD� levels in NAMPT SCKO mice and that this was
sufficient to largely rescue the deficits associated with NAMPT loss.

Previous reports indicated that pharmacological inhibition or
genetic ablation of NAMPT causes inhibition of glycolysis (Tol-
stikov et al., 2014; Tan et al., 2015; Frederick et al., 2016). This is

presumably due to inhibition of GAPDH, an NAD�-dependent
enzyme in the glycolytic pathway, as evidenced by accumulation
of metabolites produced upstream of GAPDH (Fig. 8E). To in-
vestigate whether glycolysis is impaired in SCs lacking NAMPT,
we used LC-MS/MS to measure glycolytic intermediates in sciatic
nerves from WT and NAMPT SCKO mice that received NA sup-
plementation up until death (day 0) or 5 d after NA withdrawal
(day 5). We found a significant accumulation of glycolytic inter-
mediates in the sciatic nerve of NAMPT SCKO, but not WT, mice
in which NA had been withdrawn for 5 d (Fig. 8E–H,J, heat map).
Metabolites that were increased included D-fructose 1,6-bip-
hosphate (Fig. 8F), dihydroxyacetone phosphate (Fig. 8G), and
D-glyceraldehyde 3-phosphate (Fig. 8H). All of these metabolites
precede the NAD�-dependent conversion of D-glyceraldehyde
3-phosphate into 1,3-bisphospho-D-glycerate by GAPDH (Fig.
8E), consistent with low GAPDH activity due to reduced NAD�

levels. In addition, pyruvate, the final product of glycolysis, was
decreased in NAMPT SCKO nerves at 5 d after NA depletion
compared with WT (Fig. 8 I, J, heat map), indicating that glycol-
ysis is inefficient in this situation.

Figure 5. NA rescues developmental defects of NAMPT SCKO mice. A, Diagram depicting NAD � biosynthetic pathways. B, Representative images of toluidine blue-stained semithin
cross-sections from the sciatic nerves of WT and NAMPT SCKO mice at P62 that received 0.3% NA from conception until death. C, Average G-ratio and G-ratio versus axon diameter for WT
and NAMPT SCKO sciatic nerves after treatment with 0.3% NA. n 	 3 animals with 120 axons quantified per genotype. Student’s two-tailed t test yields no significant difference. D,
Sample traces of CMAP recordings from the ankle and sciatic notch stimulation of WT and NAMPT SCKO mice, which have received 0.3% NA. E, Remak bundles in WT, but not NAMPT SCKO
sciatic nerves, have SC process interdigitation between axons (SC cytoplasm is pseudo-colored light blue). NAMPT SCKO Remak bundles contained large-diameter axons compared with
WT. n 	 3 mice. Data are mean 
 SEM.
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Figure 6. NA depletion in NAMPT SCKO mice results in severe neuropathy within days. A, Schematic representation of NAMPT SCKO mice viability with or without NA treatment. B, Characteristic
hindlimb clasping in a NAMPT SCKO mouse 7 d after NA withdrawal. C, Change in weight after NA withdrawal of WT and NAMPT SCKO mice. D, Sciatic nerve conduction velocity from CMAP
measurement decreases with time after NA withdrawal. One-way ANOVA (F(5,26) 	 5.303, p 	 0.0017). *p � 0.03 (n 	 3–9) with multiple comparisons with Sidak’s post hoc test compared with
WT with no NA withdrawal. D, F–H, One-way ANOVA with Sidak’s post hoc test. E, Representative images of toluidine blue-stained semithin cross-sections from the sciatic nerves of WT and NAMPT
SCKO mice after NA withdrawal. F, Quantification of the number of properly myelinated axons per square millimeter in WT and NAMPT SCKO mice after NA withdrawal. One-way ANOVA (F(5,13) 	
5.621, p 	 0.0056). *p 	 0.0144 (n 	 3 mice) with multiple comparisons with Sidak’s post hoc test compared with WT with no NA withdrawal. G, Quantification of the number of aberrant fibers
per square millimeter in WT and NAMPT SCKO mice after NA withdrawal. One-way ANOVA (F(5,15) 	 29.16, p � 0.0001). #p � 0.0001 (n 	 3 mice) with multiple comparisons with Sidak’s post hoc
test compared with WT with no NA withdrawal. H, Quantification of the number of SC nuclei per square millimeter in WT and NAMPT SCKO mice after NA withdrawal (n 	 3 mice). No significant
differences were found using one-way ANOVA. Data are mean 
 SEM.
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Dysregulation of NAD � biosynthesis leads to upregulation of
SC dedifferentiation pathways
The rapid progression of myelin abnormalities accompanying
NAD� decline after NA withdrawal in NAMPT SCKO mice, cou-
pled with the immature SC gene expression profile in these mutant
mice perinatally (Fig. 3B,E–I), suggested that SC maturation is reg-
ulated by NAD� metabolism. This prompted us to examine the
ERK/MEK signaling pathways that govern SC injury-induced dedi-
fferentiation and redifferentiation (Napoli et al., 2012; Cervellini et
al., 2018). We observed no changes in SC dedifferentiation pathways
in NAMPT SCKO mice treated with NA (Fig. 9A), including
phospho-MEK (Fig. 9A,B), phospho-ERK (Fig. 9A,C,D), and JUN
(Fig. 9A,E). However, 3 d after NA withdrawal when NAD� levels
had decreased, we observed upregulation of phospho-MEK (Fig.
9F,G), phospho-ERK (Fig. 9F,H), and JUN (Fig. 9F,I). These ded-
ifferentiation hallmarks remained elevated 5 d after NA withdrawal
(Fig. 9J,K,M–O). Additionally, we saw downregulation of MPZ
(Fig. 9L,P) and MBP (Fig. 9L,Q), consistent with observations of
the SC dedifferentiation program after nerve injury and, with the
presence of myelin abnormalities after NA withdrawal in NAMPT
SCKO mice (Fig. 7A). These results demonstrate that NA with-
drawal and the subsequent changes in metabolism result in the acti-
vation of ERK/MEK/JUN signaling in nerves of NAMPT SCKO
mice. Our results indicate that acute NAD� reduction in adult sci-
atic nerve activates signaling pathways associated with SC dediffer-
entiation despite the absence of nerve injury, a reaction that could
lead to defective nerve maintenance and neuropathy in diseases with
metabolic dysfunction.

Discussion
In this study, we investigated the effects of SC metabolic pertur-
bation on peripheral nerve function by ablating NAMPT, the
rate-limiting enzyme of NAD� synthesis, in SCs. NAMPT deple-
tion in SCs during embryogenesis results in improper SC
maturation, which in turn leads to radial sorting defects, hypo-
myelination, and hindlimb paralysis. We took advantage of the
existence of an alternate, NAMPT-independent pathway for
NAD� synthesis that uses NA and NAPRT to manipulate NAD�

levels in NAMPT SCKO nerves. The adult NAMPT SCKO mice

Figure 7. NA withdrawal leads to myelin degeneration. A, Electron microscopic images of
aberrant axons in NAMPT SCKO mice after NA withdrawal. Blue arrow indicates infolding. Purple
arrow indicates interlamellar myelin splitting. Orange arrow indicates abnormal axo-glial junc-
tions. Yellow arrow indicates abnormal SC cytoplasm at the outer tongue. Red arrow indicates
an increased number of mitochondria within the SC cytoplasm. Mitochondria density and di-
ameter were measured for axons (B) and SCs (C) at 0 and 7 d after NA depletion in WT and
NAMPT SCKO sciatic nerves using EM images. D, The density of nonmyelinated axons was de-
termined at 0, 5, and 7 d after NA withdrawal in WT and NAMPT SCKO sciatic nerve EM images.
*p 	 0.05 (between brackets using unpaired two-tailed Student’s t test). E, Immunostaining of
axons (NF200, green) in WT and NAMPT SCKO sciatic nerves at 5 d after NA withdrawal. Data are
mean 
 SEM. n 	 3 or 4 mice for all experiments.

Movie 2. NAMPT SCKO or WT mouse at 55 d of age and 7 d after NA
withdrawal. This NAMPT SCKO mouse showed severe hindlimb paralysis
and gait defects.
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Figure 8. NA administration rescues NAD � deficiency in NAMPT SCKO nerves, and withdrawal leads to changes in glycolysis and the pentose phosphate pathway. A–D, The metabolite levels of
NAD � (A), NaAD (B), NMN (C), and ATP (D) at 0 and 5 d after NA withdrawal in P60 WT and NAMPT SCKO sciatic nerves treated with NA were determined by LC-MS/MS. Metabolite levels were
normalized by the protein content in each sample and expressed relative to WT 0 d after NA withdrawal. A, One-way ANOVA (F(3,11) 	 12.4, p 	 0.0007). *p � 0.03, compared with WT with no NA
withdrawal. #p 	 0.0033, compared with NAMPT SCKO with no NA withdrawal (n 	 3–5) with multiple comparisons with Sidak’s post hoc test. B, One-way ANOVA (F(3,11) 	 49.79, p � 0.0001).
*p 	 0.004, compared with WT with no NA withdrawal with multiple comparisons with Sidak’s post hoc test (n 	 3–5). C, One-way ANOVA (F(3,11) 	 8.049, p 	 0.0041). *p � 0.02, compared
with WT or NAMPT SCKO with no NA withdrawal (n 	 3–5). D, One-way ANOVA (F(3,11) 	 0.8632, p 	 0.4889), no significant difference (n 	 3–5). E, The glycolysis pathway. Black represents
metabolites that were not detected. Blue represents metabolites that were detected but not significantly changed. Green represents metabolites that were significantly downregulated. Red
represents metabolites that were significantly upregulated in NAMPT SCKO sciatic nerves at 5 d after NA withdrawal (relative to WT 0 d after NA withdrawal). Legend shown at the bottom right
corner. F–J, Ion abundance of each metabolites were normalized to the protein content and expressed relative to WT 0 d after NA withdrawal. The glycolysis intermediates (F) D-fructose
1,6-biphosphate, (G) dihydroxyacetone phosphate, and (H) D-glyceraldehyde 3-phosphate were all significantly upregulated in NAMPT SCKO sciatic nerves 5 d after NA withdrawal. I, Pyruvic acid
is significantly decreased in WT versus SCKO nerves 5 d after NA withdrawal. F, One-way ANOVA (F(3,10) 	 28.55, p � 0.0001). *p � 0.0001, compared with all other groups with multiple
comparisons with Sidak’s post hoc test (n 	 3–5). G, One-way ANOVA (F(3,10) 	 23.19, p � 0.0001). *p 	 0.0004 (n 	 3–5) compared with all other groups with multiple comparisons with Sidak’s
post hoc test. H, One-way ANOVA (F(3,10) 	 23.54, p � 0.0001). *p 	 0.0004 (n 	 3–5) compared with all other groups with multiple comparisons with Sidak’s post hoc test. I, *p 	 0.03 (n 	
3–5) compared between brackets with unpaired two-tailed Student’s t test. J, Heat map displaying levels of glycolysis metabolites and NAD � at 0 and 5 d after NA depletion. Each metabolite level
was normalized to the average values of WT 0 d after NA withdrawal and log2 of fold changes are indicated by the number and color code. Data are mean 
 SEM.
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show normal nerve morphology and function when treated with
NA. However, when NA is withdrawn, nerve conduction is
severely and rapidly decreased concomitant with aberrant myeli-
nation and inhibition of glycolysis. The MEK/ERK/JUN signaling
cascade is activated soon after NA depletion, supporting the idea
that aberrant SC dedifferentiation underlies these abnormalities.
The rapid demyelination observed in this regulable neuropathy
model provides a unique opportunity to study the early phase of
the demyelination process. Overall, our results suggest that de-
regulation of NAD� homeostasis is a potential risk factor for
demyelinating peripheral neuropathy through aberrant activa-
tion of the SC dedifferentiation program.

NAMPT SCKO mice show severe NAD� reduction, yet SC
viability is unchanged, suggesting the existence of SC compensa-

tory mechanisms that prevent cell death despite metabolic
challenges. In contrast to SC viability, SC differentiation and my-
elination are strongly dependent on metabolic status (Rangaraju
et al., 2009; Fünfschilling et al., 2012; Viader et al., 2013; Bei-
rowski et al., 2014; Norrmén et al., 2014). Our metabolomics
analysis revealed a reduction of GAPDH activity in NAMPT
SCKO nerves, which resulted in decreased pyruvate levels. Al-
though pyruvate is a precursor of acetyl CoA, an important com-
ponent of energy production via the TCA cycle, ATP levels were
maintained in NAMPT-SCKO nerves. This suggests a compen-
satory metabolic adaptation to maintain essential energetics, per-
haps by shunting acetyl CoA away from the cytosol for use in fatty
acid synthesis and using it preferentially in the mitochondria for
energy production. Such a metabolic shift would result in re-

Figure 9. NA withdrawal leads to upregulation of SC dedifferentiation markers. A, Western blot analysis of p-MEK, p-ERK, ERK, and JUN expression in sciatic nerves from WT and NAMPT SCKO
treated with NA. B–E, Quantification of protein expression levels from A normalized to �-actin for (B) p-MEK, (C) p-ERK, (D) total ERK, and (E) JUN. F, Western blot analysis of p-MEK, p-ERK, and JUN
expression in sciatic nerves from WT and NAMPT SCKO that were treated with NA until P55, then received normal drinking water for (F) 3 d or (J–L) 5 d. G–I, Quantifications of the protein expression
levels normalized to �-actin for (G) p-MEK, (H) p-ERK, and (I) JUN from F, M, p-ERK from J, N, total ERK, and (O) JUN from K, P, MPZ from Q, and MBP from L. B–E, G–I, M–Q, Student’s two-tailed
t test n 	 3 mice. G, *p 	 0.03. H, M, *p 	 0.04. I, *p 	 0.002. N, *p 	 0.02. O, *p 	 0.003. Q, *p 	 0.01. Data are mean 
 SEM.
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duced lipid production and presumably a deficit in myelin for-
mation and/or maintenance. Indeed, SC-specific loss of the
metabolic regulator LKB1 results in severe peripheral neuropathy
due to the loss of citrate, the precursor for cytosolic acetyl CoA,
and a reduction in major myelin lipid classes (Pooya et al., 2014).
These results suggest that hypomyelination in NAMPT SCKO
mice could result from compensatory pathways that maintain
viability but result in reduced fatty acid production.

NAMPT SCKO mice show severe delay of SC maturation to-
gether with altered expression of SC differentiation genes. NAD�

metabolism could affect expression of SC differentiation genes
through regulation of sirtuin-dependent protein acetylation or
directly by altered synthesis of the acetylation substrate, acetyl
CoA. SIRT1 deacetylates and destabilizes NOTCH, an important
regulator of SC differentiation and myelination (Woodhoo et al.,
2009; Guarani et al., 2011). In another example, SC myelination is
dependent on NF-�B p65, whose activity is regulated by deacety-
lation mediated by HDAC1/2 (Chen et al., 2011). Radial sorting
and myelination are influenced by the recruitment of the histone
acetyltransferase p300 to selected enhancers by the SWI/SNF
family of chromatin-remodeling complexes (Weider et al., 2012;
Alver et al., 2017). Overall, these results suggest that NAD� me-
tabolism causes epigenetic changes that alter genetic networks
leading to abnormalities in SC differentiation/dedifferentiation
pathways.

In addition to the above transcriptional changes, we found a
significant increase in MEK/ERK/JUN signaling at 3 d after NA
depletion in NAMPT SCKO nerves. Activation of this pathway is
observed in dedifferentiating SCs after nerve injury (Arthur-
Farraj et al., 2012) and is sufficient to drive SC dedifferentiation
in adult nerves (Napoli et al., 2012; Fazal et al., 2017). It is well
known that sciatic nerve transection initiates a rapid decline in
NAD� in the distal portion of the nerve (Gerdts et al., 2015;
Sasaki et al., 2016); however, whether this occurs in SCs or only in
the axonal component is unknown. The activation of ERK/MEK/
JUN signaling upon NAD� reduction in the absence of nerve
injury suggests that the SC dedifferentiation observed after injury
could be induced by changes in NAD� homeostasis.

Upon NA withdrawal, the nerves in adult NAMPT SCKO
mice underwent a rapid disruption of the interaction between
SCs and axons, as well as the breakdown of myelin structures
characterized by interlamellar splitting of myelin sheath. The dis-
ruption of SC-axon contacts is essential for the insulation and
SC-mediated trophic support of axons and is one of the earliest
signs of demyelinating neuropathy (de Waegh et al., 1992; Yin et
al., 1998). The detachment of the SC myelin sheath from the axon
has also been observed in mutant mice lacking either the cell
adhesion molecule CADM4 or the tight junction protein
CLDN19 (Miyamoto et al., 2005; Golan et al., 2013), both of
which develop severe peripheral neuropathy. How NAD� levels
might regulate SC-axon adhesion, either through these proteins
or others, will require additional investigation.

NA administration restored NAD� levels and rescued most
abnormalities found in NAMPT SCKO mice, including short-
ened life span, hypomyelination, electrophysiological defects,
and abnormal activation of SC dedifferentiation signals. How-
ever, NA administration did not completely rescue all SC defects.
This is evidenced by the continued absence of SC cytoplasm that
divides small-fiber axons in Remak bundles, suggesting that the
radial sorting deficits are incompletely reversed. This recalcitrant
defect could reflect differences in NAD� metabolism in nonmy-
elinating SCs. For instance, their ability to produce NAD� from
NA may be restricted due to low levels of NAPRT and/or NAD�

synthetase. If this is the case, future experiments aimed at rescu-
ing Remak axonal sorting by an alternative route of NMN supply
may provide further insights. The absence of SC cytoplasm be-
tween Remak bundle axons is also found in mice with SC-specific
mutations in other metabolic proteins, including TFAM (Viader
et al., 2011), COX10 (Fünfschilling et al., 2012), and LKB1 (Bei-
rowski et al., 2014). In addition, LRP1, low-density lipoprotein
receptor family protein (Orita et al., 2013), and BRG1, a core
protein in the BAF chromatin remodeling complex, are also re-
quired for Remak axonal sorting (Weider et al., 2012). It will be
important to determine whether NAD� levels influence the
function or expression of these regulators, as the sensory fibers
affected by these abnormalities are a central target of many pe-
ripheral neuropathies, including those caused by diabetes and
aging.

NAMPT-mediated NAD� synthesis is chronically impaired
in various tissues in aged or Type 2 diabetic mice (Yoshino et al.,
2011; Stein and Imai, 2014; Verdin, 2015). In addition, the pri-
mary enzyme mediating NAD� degradation, CD38, increases
with age. The impact of chronic lower levels of NAD� in the
peripheral nervous system is not well studied, but it likely con-
tributes to the association of neuropathy with increasing age and
metabolic syndromes (Feldman et al., 2017). Our current find-
ings reveal crucial roles of NAD� homeostasis in peripheral
nerve maintenance. In particular, the need for adequate NAD�

levels in suppressing SC dedifferentiation in adult nerve provides
new insights that may lead to alternative approaches for treating
peripheral neuropathies.
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Müller J, Hillgärtner S, Tamm ER, Metzger D, Wegner M (2012)
Chromatin-remodeling factor Brg1 is required for Schwann cell differen-
tiation and myelination. Dev Cell 23:193–201. CrossRef Medline

Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson
DB, Wilton DK, Al-Shawi R, Simons P, Shen J, Guillemot F, Radtke F,

Meijer D, Feltri ML, Wrabetz L, Mirsky R, Jessen KR (2009) Notch con-
trols embryonic Schwann cell differentiation, postnatal myelination and
adult plasticity. Nat Neurosci 12:839 – 847. CrossRef Medline

Yin X, Crawford TO, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD
(1998) Myelin-associated glycoprotein is a myelin signal that modulates
the caliber of myelinated axons. J Neurosci 18:1953–1962. CrossRef
Medline

Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucle-
otide, a key NAD � intermediate, treats the pathophysiology of diet-
and age-induced diabetes in mice. Cell Metab 14:528 –536. CrossRef
Medline

Zhang LQ, Van Haandel L, Xiong M, Huang P, Heruth DP, Bi C, Gaedigk R,
Jiang X, Li DY, Wyckoff G, Grigoryev DN, Gao L, Li L, Wu M, Leeder JS,
Ye SQ (2017) Metabolic and molecular insights into an essential role of
nicotinamide phosphoribosyltransferase. Cell Death Dis 8:e2705.
CrossRef Medline

6562 • J. Neurosci., July 18, 2018 • 38(29):6546 – 6562 Sasaki, Hackett et al. • NAD� Metabolism in Schwann Cell Development

http://dx.doi.org/10.1126/science.aac4854
http://www.ncbi.nlm.nih.gov/pubmed/26785480
http://dx.doi.org/10.1523/JNEUROSCI.0884-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21752989
http://dx.doi.org/10.1016/j.neuron.2013.01.012
http://www.ncbi.nlm.nih.gov/pubmed/23473319
http://dx.doi.org/10.1016/j.devcel.2012.05.017
http://www.ncbi.nlm.nih.gov/pubmed/22814607
http://dx.doi.org/10.1038/nn.2323
http://www.ncbi.nlm.nih.gov/pubmed/19525946
http://dx.doi.org/10.1523/JNEUROSCI.18-06-01953.1998
http://www.ncbi.nlm.nih.gov/pubmed/9482781
http://dx.doi.org/10.1016/j.cmet.2011.08.014
http://www.ncbi.nlm.nih.gov/pubmed/21982712
http://dx.doi.org/10.1038/cddis.2017.132
http://www.ncbi.nlm.nih.gov/pubmed/28333140

	Dysregulation of NAD+ metabolism induces a Schwann cell dedifferentiation program
	Recommended Citation

	Dysregulation of NAD+ Metabolism Induces a Schwann Cell Dedifferentiation Program
	Introduction
	Materials and Methods
	Results
	Discussion
	References


