79 research outputs found

    PAH Exposure

    Get PDF

    Alkyl Phenols and Diethylhexyl Phthalate in Tissues of Sheep Grazing Pastures Fertilized with Sewage Sludge or Inorganic Fertilizer

    Get PDF
    We studied selected tissues from ewes and their lambs that were grazing pastures fertilized with either sewage sludge (treated) or inorganic fertilizer (control) and determined concentrations of alkylphenols and phthalates in these tissues. Mean tissue concentrations of alkylphenols were relatively low (< 10–400 μg/kg) in all animals and tissues. Phthalates were detected in tissues of both control and treated animals at relatively high concentrations (> 20,000 μg/kg in many tissue samples). The use of sludge as a fertilizer was not associated with consistently increased concentrations of either alkylphenols or phthalates in the tissues of animals grazing treated pastures relative to levels in control animal tissues. Concentrations of the two classes of chemicals differed but were of a similar order of magnitude in liver and muscle as well as in fat. Concentrations of each class of compound were broadly similar in tissues derived from ewes and lambs. Although there were significant differences (p < 0.01 or p < 0.001) between years (cohorts) in mean tissue concentrations of both nonylphenol (NP) and phthalate in each of the tissues from both ewes and lambs, the differences were not attributable to either the age (6 months or 5 years) of the animal or the duration of exposure to treatments. Octylphenol concentrations were generally undetectable. There was no consistent cumulative outcome of prolonged exposure on the tissue concentrations of either class of pollutant in any ewe tissue. Mean tissue concentrations of phthalate were higher (p < 0.001) in the liver and kidney fat of male compared with female lambs. We suggest that the addition of sewage sludge to pasture is unlikely to cause large increases in tissue concentrations of NP and phthalates in sheep and other animals with broadly similar diets and digestive systems (i.e., domestic ruminants) grazing such pasture

    Maternal undernutrition and the ovine acute phase response to vaccination

    Get PDF
    Background: The acute phase response is the immediate host response to infection, inflammation and trauma and can be monitored by measuring the acute phase proteins (APP) such as haptoglobin ( Hp) or serum amyloid A (SAA). The plane of nutrition during pregnancy is known to affect many mechanisms including the neuroendocrine and neuroimmune systems in neonatal animals but effects on the APP are unknown. To investigate this phenomenon the serum concentration of Hp and SAA was initially determined in non-stimulated lambs from 3 groups (n = 10/group). The dams of the lambs of the respective groups were fed 100% of requirements throughout gestation (High/High; HH); 100% of requirements for the first 65 d of gestation followed by 70% of requirements until 125 d from when they were fed 100% of requirements (High/Low; HL); 65% of liveweight maintenance requirements for the first 65 d gestation followed by 100% of requirements for the remainder of pregnancy ( Low/High; LH). The dynamic APP response in the lambs was estimated by measuring the concentration of Hp and SAA following routine vaccination with a multivalent clostridial vaccine with a Pasteurella component, Heptavac P (TM) following primary and secondary vaccination. Results: The Hp and SAA concentrations were significantly lower at the time of vaccination ( day 8-14) than on the day of birth. Vaccination stimulated the acute phase response in lambs with increases found in both Hp and SAA. Maternal undernutrition led to the SAA response to vaccination being significantly lower in the HL group than in the HH group. The LH group did not differ significantly from either the HH or HL groups. No significant effects of maternal undernutrition were found on the Hp concentrations. A significant reduction was found in all groups in the response of SAA following the second vaccination compared to the response after the primary vaccination but no change occurred in the Hp response. Conclusion: Decreased SAA concentrations, post-vaccination, in lambs born to ewes on the HL diet shows that maternal undernutrition prior to parturition affects the innate immune system of the offspring. The differences in response of Hp and SAA to primary and secondary vaccinations indicate that the cytokine driven APP response mechanisms vary with individual AP

    Exposure to a Complex Cocktail of Environmental Endocrine-Disrupting Compounds Disturbs the Kisspeptin/GPR54 System in Ovine Hypothalamus and Pituitary Gland

    Get PDF
    BACKGROUND: Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to "real-life," environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. OBJECTIVES: We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein-coupled receptor 54) system. METHODS: KiSS-1, GPR54, and ERalpha (estrogen receptor alpha) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHbeta (luteinizing hormone beta) and ERalpha in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. RESULTS: Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHbeta and ERalpha in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. CONCLUSIONS: This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction

    Cellular and Hormonal Disruption of Fetal Testis Development in Sheep Reared on Pasture Treated with Sewage Sludge

    Get PDF
    The purpose of this study was to evaluate whether experimental exposure of pregnant sheep to a mixture of environmental chemicals added to pasture as sewage sludge (n = 9 treated animals) exerted effects on fetal testis development or function; application of sewage sludge was undertaken so as to maximize exposure of the ewes to its contents. Control ewes (n = 9) were reared on pasture treated with an equivalent amount of inorganic nitrogenous fertilizer. Treatment had no effect on body weight of ewes, but it reduced body weight by 12–15% in male (n = 12) and female (n = 8) fetuses on gestation day 110. In treated male fetuses (n = 11), testis weight was significantly reduced (32%), as were the numbers of Sertoli cells (34% reduction), Leydig cells (37% reduction), and gonocytes (44% reduction), compared with control fetuses (n = 8). Fetal blood levels of testosterone and inhibin A were also reduced (36% and 38%, respectively) in treated compared with control fetuses, whereas blood levels of luteinizing hormone and follicle-stimulating hormone were unchanged. Based on immunoexpression of anti-Müllerian hormone, cytochrome P450 side chain cleavage enzyme, and Leydig cell cytoplasmic volume, we conclude that the hormone changes in treated male fetuses probably result from the reduction in somatic cell numbers. This reduction could result from fetal growth restriction in male fetuses and/or from the lowered testosterone action; reduced immunoexpression of α-smooth muscle actin in peritubular cells and of androgen receptor in testes of treated animals supports the latter possibility. These findings indicate that exposure of the developing male sheep fetus to real-world mixtures of environmental chemicals can result in major attenuation of testicular development and hormonal function, which may have consequences in adulthood

    Maternal undernutrition does not alter Sertoli cell numbers or the expression of key developmental markers in the mid-gestation ovine fetal testis

    Get PDF
    BackgroundThe aim of this study was to determine the effects of maternal undernutrition on ovine fetal testis morphology and expression of relevant histological indicators. Maternal undernutrition, in sheep, has been reported, previously, to alter fetal ovary development, as indicated by delayed folliculogenesis and the altered expression of ovarian apoptosis-regulating gene products, at day 110 of gestation. It is not known whether or not maternal undernutrition alters the same gene products in the day 110 fetal testis.Design and methodsMature Scottish Blackface ewes were fed either 100% (Control; C) or 50% (low; L) of estimated metabolisable energy requirements of a pregnant ewe, from mating to day 110 of gestation. All pregnant ewes were euthanized at day 110 and a sub-set of male fetuses was randomly selected (6 C and 9?L) for histology studies designed to address the effect of nutritional state on several indices of testis development. Sertoli cell numbers were measured using a stereological method and Ki67 (cell proliferation index), Bax (pro-apoptosis), Mcl-1 (anti-apoptosis), SCF and c-kit ligand (development and apoptosis) gene expression was measured in Bouins-fixed fetal testis using immunohistochemistry.ResultsNo significant differences were observed in numbers of Sertoli cells or testicular Ki67 positive cells. The latter were localised to the testicular cords and interstitium. Bax and Mcl-1 were localised specifically to the germ cells whereas c-kit was localised to both the cords and interstitium. SCF staining was very sparse. No treatment effects were observed for any of the markers examined.ConclusionsThese data suggest that, unlike in the fetal ovary, maternal undernutrition for the first 110?days of gestation affects neither the morphology of the fetal testis nor the expression of gene products which regulate apoptosis. It is postulated that the effects of fetal undernutrition on testis function may be expressed through hypothalamic-pituitary changes

    In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver

    Get PDF
    Background: Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown. Methods: In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses. Results: In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1). Conclusions: Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism
    corecore