27 research outputs found

    ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies

    Get PDF
    Dystroglycanopathies are a clinically and genetically diverse group of recessively inherited conditions ranging from the most severe of the congenital muscular dystrophies, Walker-Warburg syndrome, to mild forms of adult-onset limb-girdle muscular dystrophy. Their hallmark is a reduction in the functional glycosylation of α-dystroglycan, which can be detected in muscle biopsies. An important part of this glycosylation is a unique O-mannosylation, essential for the interaction of α-dystroglycan with extracellular matrix proteins such as laminin-α2. Mutations in eight genes coding for proteins in the glycosylation pathway are responsible for ∼50% of dystroglycanopathy cases. Despite multiple efforts using traditional positional cloning, the causative genes for unsolved dystroglycanopathy cases have escaped discovery for several years. In a recent collaborative study, we discovered that loss-of-function recessive mutations in a novel gene, called isoprenoid synthase domain containing (ISPD), are a relatively common cause of Walker-Warburg syndrome. In this article, we report the involvement of the ISPD gene in milder dystroglycanopathy phenotypes ranging from congenital muscular dystrophy to limb-girdle muscular dystrophy and identified allelic ISPD variants in nine cases belonging to seven families. In two ambulant cases, there was evidence of structural brain involvement, whereas in seven, the clinical manifestation was restricted to a dystrophic skeletal muscle phenotype. Although the function of ISPD in mammals is not yet known, mutations in this gene clearly lead to a reduction in the functional glycosylation of α-dystroglycan, which not only causes the severe Walker-Warburg syndrome but is also a common cause of the milder forms of dystroglycanopathy

    Mutations in GDP-mannose pyrophosphorylase b cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan

    Get PDF
    Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. © 2013 The American Society of Human Genetics.Funding for UK10K was provided by the Wellcome Trust under award WT091310

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    A systematic survey of loss-of-function variants in human protein-coding genes

    Get PDF
    Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease-causing variants, as well as common LoF variants in nonessential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies
    corecore