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ARTICLE

Mutations in GDP-Mannose Pyrophosphorylase B
Cause Congenital and Limb-Girdle Muscular Dystrophies
Associated with Hypoglycosylation of a-Dystroglycan

Keren J. Carss,1,30 Elizabeth Stevens,2,30 A. Reghan Foley,2 Sebahattin Cirak,2,3 Moniek Riemersma,4,5,6

Silvia Torelli,2 Alexander Hoischen,6 Tobias Willer,7 Monique van Scherpenzeel,5 Steven A. Moore,8

Sonia Messina,9 Enrico Bertini,10 Carsten G. Bönnemann,11 Jose E. Abdenur,12,13 Carla M. Grosmann,14

Akanchha Kesari,3 Jaya Punetha,3,15 Ros Quinlivan,2,16 Leigh B. Waddell,17 Helen K. Young,18,19

Elizabeth Wraige,20 Shu Yau,21 Lina Brodd,21 Lucy Feng,2 Caroline Sewry,2,22 Daniel G. MacArthur,23,24

Kathryn N. North,17,25,26 Eric Hoffman,3,15 Derek L. Stemple,1 Matthew E. Hurles,1

Hans van Bokhoven,27,28 Kevin P. Campbell,7 Dirk J. Lefeber,4,5 UK10K Consortium, Yung-Yao Lin,1,29

and Francesco Muntoni2,*

Congenital muscular dystrophies with hypoglycosylation of a-dystroglycan (a-DG) are a heterogeneous group of disorders often asso-

ciated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glyco-

sylation of a-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy

phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations

in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with

hypoglycosylated a-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is

required for O-mannosylation of proteins, including a-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced

a-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in

fibroblasts from an affected individual partially restored glycosylation of a-DG. Whereas wild-type GMPPB localized to the cytoplasm,

five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally,

knockdown of theGMPPB ortholog in zebrafish caused structural muscle defects with decreasedmotility, eye abnormalities, and reduced

glycosylation of a-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular

dystrophies with hypoglycosylation of a-DG.

Introduction

Congenital muscular dystrophy (CMD) represents a clini-

cally and genetically heterogeneous group of neuromus-

cular disorders characterized by the onset of muscle

weakness, often associated with limb contractures, at birth

or within the first few months of life. A major subgroup of

CMD is associated withmutations in genes involved in the
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glycosylation of a-dystroglycan (a-DG) and is commonly

referred to as a secondary dystroglycanopathy. a-DG is a

peripheral-membrane protein that is part of the dystro-

phin-associated glycoprotein complex, which provides a

link between proteins located in the extracellular matrix

and proteins located in the cytoplasm immediately

beneath the plasma membrane. Dystroglycan is translated

from a single mRNADAG1 (MIM 128239) and cleaved into

a and b subunits.1,2 Extracellular a-DG noncovalently

binds to the transmembrane protein b-dystroglycan

(b-DG), which in turn associates with intracellular proteins

involved in force and signal transduction. In contrast,

a-DG binds a number of extracellular ligands, including

laminins, perlecan, agrin, neurexin, pikachurin, and

slit.2–5 Extensive and tissue-specific glycosylation is essen-

tial for the binding of a-DG to these extracellular-matrix

ligands.6–10 Recessive mutations in DAG1 have been

identified in a single case of mild muscular dystrophy,

suggesting the existence of a primary subset of dystroglyca-

nopathies.11

Mutations in 14 genes are currently known to cause sec-

ondary dystroglycanopathies. POMT1 (MIM 607423),

POMT2 (MIM 607439), and POMGNT1 (MIM 606822)

encode proteins with confirmed involvement in O-man-

nosylation.3,4,12,13 DPM2 (MIM 603564), DPM3 (MIM

605951), and DOLK (MIM 610746) encode proteins

involved in the synthesis of dolichol-phosphate mannose

(Dol-P-Man), which is the essential mannose donor

required for mannosylation.14–16 LARGE (MIM 603590)

encodes a bifunctional enzyme with xylosyl and glucuro-

nyltransferase activities.17,18 B3GNT1 (MIM 605581) and

B3GALNT2 (MIM 610194) encode glycosyltransferases

whose exact role in O-mannosylation remains un-

clear.19,20 On the basis of protein sequence homology,

FKTN (MIM 607440), FKRP (MIM 606596), and GTDC2

(MIM 614828) are thought to encode glycosyltransferases,

although their enzymatic function has not been conclu-

sively demonstrated.21–23 Finally, mutations in the largely

uncharacterized genes ISPD (MIM 614631) and TMEM5

(MIM 605862) can also cause secondary dystroglycanopa-

thies.24–28

Mutations in the aforementioned genes were originally

identified almost invariably in individuals affected by

severe CMD variants—with associated structural brain

and eye abnormalities—such as Walker-Warburg syn-

drome (WWS [MIM 236670]), Fukuyama CMD (FCMD

[MIM 253800]), and muscle-eye-brain disease (MEB [MIM

253280]) or forms with exclusive skeletal-muscle involve-

ment, such as CMD type 1C (MIM 606612). Subsequently,

milder allelic mutations in several of these genes were

identified in later-onset forms of limb-girdle muscular dys-

trophy (LGMD), such as in the common LGMD2I variant

(MIM 607155). Muscle pathology in all of these conditions

shares dystrophic changes and defective glycosylation of

a-DG, which can be assessed on immunohistochemistry

or immunoblot with IIH6 or VIA4-1 antibodies, which

recognize disease-relevant glycoepitopes on a-DG.9

The dystroglycanopathies represent one of the most

common forms of muscular dystrophy, and mutations in

POMT1, POMT2, POMGNT1, FKRP, or ISPD are the most

frequent cause.24,27 Mutations in the known genes cannot

explain all cases.27,29–31 In this study, we identified muta-

tions in guanosine diphosphate mannose (GDP-mannose)

pyrophosphorylase B (GMPPB) in eight dystroglycanop-

athy cases affected by either CMD or LGMD phenotypes.

Functional analyses using cellular and zebrafish models

implicated GMPPB (also known as mannose-1-phosphate

guanyltransferase beta [Enzyme Commission number

2.7.7.13]) in the glycosylation of a-DG.

Subjects and Methods

Clinical Presentation of Subjects
The main clinical features of the eight unrelated cases (P1–P8) re-

ported in this manuscript are presented in Table 1. The spectrum

of severity observed in these cases ranges from a child with a clas-

sical CMD presentation characterized by muscle weakness at birth

and motor and cognitive developmental delays including ataxia,

absent speech development, and inability to walk unsupported

(P1) to children presenting in the first few months of life with hy-

potonia, muscle weakness, delayed acquisition of independent

mobility, and mild intellectual disability but normal brain struc-

ture (P3 and P4) to children presenting in the first few years of

life withmild limb-girdle weakness andmild intellectual disability

(P2 and P8) to a child with normal cognitive function following

a LGMD disease course (P7). Commonly associated features

included epilepsy (P2, P5, P6, and P8), microcephaly (P1, P2, P3,

and P8), cataracts (P3, P4, and P8), strabismus (P3, P4, and P5)

(Figure S1, available online), and nystagmus (P4 and P8). Brain

MRI showed a range of abnormalities, including structural defects

such as cerebellar and pontine hypoplasia (Figure 1), but it was

normal in P2, P3, P4, and P8 (it was not performed in P7), who

were all affected by a milder variant. Progression of muscle weak-

ness was clearly observed, and P4 lost ambulation during child-

hood. Evidence of combined cardiorespiratory compromise was

evident by the age of 10 years in P8, and features of cardiac

involvement, including a long QT interval and left ventricular

dilation, were documented in P3 and P4, respectively. P5 and P6,

affected by CMD with cerebellar involvement, have previously

been described in detail (affected individuals 1 and 2, respectively,

in Messina et al.32).

The institutional review board (IRB) of the University College

London Institute of Child Health and Great Ormond Street

Hospital in the United Kingdom approved the study of P1, P2,

and P7 and all cellular work. Informed consent and local-re-

view-board approval were in accordance with the UK10K project

ethical framework. We recruited and analyzed P3 under Chil-

dren’s National Medical Center (CNMC) IRB protocol 2405,

which was reviewed and approved by the Office for the

Protection of Human Subjects at the CNMC, Washington, DC,

USA. P3 provided informed consent for publication of clinical

photographs. The IRB of the University of Iowa approved the

study of P4 (IRB ID 200510769). The study of P5 and P6 was

performed under ethical approval number 489/2012 and protocol

number GUP1100A1. The study of P8 was approved by the

Sydney Children’s Hospitals Network Human Research Ethics

Committee.
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Table 1. Clinical Features of Individuals with GMPPB Mutations

Case

P1 P2 P3 P4 P5a P6a P7 P8

Gender male female male female female female male male

Current age 8 years 12 years 16 years 13 years died at 14 years 10 years 6 years 18 years

Ethnicity Pakistani Indian Mexican Mexican Italian Italian English Egyptian

Prenatal findings oligohydramnios none none decreased fetal
movement

decreased fetal
movement

decreased fetal
movement

none none

Age at presentation birth birth 2 weeks birth 4 months 4 months 4 years 2.5 years

Presenting symptoms increased tone;
microcephaly; cleft
palate; feeding
difficulties

hypotonia;
microcephaly

increased tone,
then hypotonia;
microcephaly;
cataracts; torticollis;
ileal atresia

hypotonia; feeding
difficulties

poor head control poor head control mild exercise
intolerance

difficulty in climbing
stairs; microcephaly

Maximal motor
ability

walking with support
(at 3 years)

running walking (at 3.5 years) walking (at 3 years) unable to sit sitting (at 2 years) running running

Main neurological
features

severe intellectual
delay; sensorineural
hearing loss; ataxia

mild intellectual
delay; epilepsy

mild intellectual delay mild intellectual delay severe intellectual
delay; drug-resistant
epilepsy; motor delay

severe intellectual
delay; drug-resistant
epilepsy; motor delay

normal cognitive
function

mild intellectual
delay; epilepsy

Ophthalmologic
findings

retinal dysfunction (on
electroretinogram)

none cataracts; strabismus;
ptosis

cataracts; strabismus;
intermittent
nystagmus; ptosis

strabismus none none cataracts; nystagmus

Cardiorespiratory
findings

none none long QT syndrome left ventricular
dilatation

none none none wandering atrial
pacemaker;
cardiomyopathy;
respiratory
insufficiency

Maximum CK (U/l) 2,974 4,504 7,323 8,450 630 720 3,000 5,200

Brain MRI findings pontine and cerebellar
hypoplasia

no structural
abnormality

no structural
abnormality

no structural
abnormality

cerebellar hypoplasia cerebellar hypoplasia not performed no structural
abnormality

Diagnosisb MEB- and/or FCMD-
like

LGMD-MR CMD-MR CMD-MR CMD-CRB CMD-CRB LGMD LGMD-MR

Abbreviations are as follows: CK, creatine kinase; CMD-CRB, congenital muscular dystrophy with cerebellar involvement; CMD-MR, congenital muscular dystrophy with mental retardation; FCMD, Fukuyama congenital
muscular dystrophy; LGMD-MR, limb-girdle muscular dystrophy with mental retardation; MEB, muscle-eye-brain disease; and WWS, Walker-Warburg syndrome.
aThe phenotypes of P5 and P6 have previously been described in detail.32
bDiagnostic categories have previously been described.31
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Genetic Analysis
We sequenced the exome of P1 within the UK10K project and

called and filtered variants as previously described.26

P3 underwent exome sequencing at the CNMC according to the

following protocol: 1 mg of DNA was sheared to 200 bp with a

Covaris S220 (Covaris) and was prepared with TruSeq DNA Sample

Preparation and TruSeq Exome Enrichment Kits (Illumina) accord-

ing to the manufacturer’s instructions. We sequenced it by using a

HiScanSQ (Illumina) with 200 cycles and paired-end multiplexed

sequencing with read lengths of 100 bp in each direction. The

mean coverage was 503. We used CASAVA 1.8.1 for initial demul-

tiplexing and file conversion, and we aligned sequences to the

human reference genome (UCSC Genome Browser hg19) with

the use of NextGENe (SoftGenetics) and annotated calls by using

the dbNSFP database.33

P5 and P6 were exome sequenced as previously described, and

genetic variants were further prioritized on the basis of a filter con-

sisting of glycosylation genes.24,34

For P8, exome capture was performed on genomic DNA with

the Agilent Whole Exome SureSelect v.2 kit according to the

manufacturer’s instructions. Captured exome DNA was then sub-

jected to Illumina sequencing. Reads were processed by Picard

and aligned to the human reference genome (hg19) with the

Burrows-Wheeler Aligner,35,36 and then calling of single-nucleo-

tide variants (SNVs) and small indels was performed with the

GATK toolkit.37 Variants were annotated with a modified version

of the Ensembl Variant Effect Predictor38 and filtered for inheri-

tance patterns and predicted functional severity with the xBrowse

web server.

We used standard Sanger-sequencing protocols to verify all the

mutations identified by exome sequencing and to discover muta-

tions in P2, P4, and P7 (data not shown). Primer sequences are

available upon request.

Muscle Pathology and Immunoblots
Histological, histochemical, and immunohistochemical studies

on skeletal-muscle biopsies were performed as described previ-

ously,20,39 except that in addition, an antibody against the

300 kDa fragment of laminin-a2 (4H8-2)40 was used.

Immunoblotting of P1 muscle protein lysate and P1, P2, P4, P5,

and P6 fibroblast protein lysate was performed as previously

described.20 For P4 muscle-biopsy samples, we enriched glyco-

proteins with wheat germ agglutinin (WGA) and immuno-

blotted these on polyvinylidene difluoride (PVDF) membranes as

described.9 Membranes were developed with infrared-dye-conju-

gated secondary antibodies (Pierce Antibodies) and scanned

with an Odyssey infrared imaging system (LI-COR Bioscience).

Laminin-overlay assays were performed as previously described.9

The monoclonal antibodies to the fully glycosylated form of

a-DG (IIH6), core a-DG (G6317), and b-DG (AP83) have been char-

acterized previously.25,41,42

Expression Studies of GMPPB
In order to study the transcription profile of GMPPB, we reverse

transcribed an adult tissue RNA panel (Life Technologies) and fetal

tissue RNA panel (Agilent Technologies) by using a one-step RT-

PCR kit (QIAGEN) according to the manufacturer’s instructions.

Primers are listed in Table S1.

In order to assess the localization of wild-type GMPPB and

GMPPB carrying the amino acid changes observed in affected in-

dividuals, we amplified its coding sequence (RefSeq accession

number NM_021971.1) from a full-length cDNA IMAGE clone

of human GMPPB (IRAUp969D1013D, Source Bioscience). The

product was cloned into the pcDNA3.1/V5-His TOPO expression

vector (Life Technologies) according to themanufacturer’s instruc-

tions. We introduced mutations identified in the individuals

with CMD into GMPPB pcDNA 3.1/V5-His TOPO by using

QuickChange II site-directed mutagenesis (Agilent Technologies).

Primers are listed in Table S2. We assessed the localization of

the V5-FITC-tagged wild-type and altered GMPPB constructs in

cultured C2C12 myoblasts as previously described20 by using the

V5-FITC antibody (Life Technologies).

Effect of GMPPB Mutations on a-DG Glycosylation

Assessed by Flow Cytometry
In order to quantify the amount of a-DG glycosylation on fibro-

blasts of available affected individuals and healthy control fibro-

blasts, we used IIH6 (Merck Millipore) to perform flow cytometry

as previously described.20 To calculate the mean fluorescence in-

tensity (MFI) of each population of fibroblasts, we first subtracted

the background-intensity values obtained when cells were incu-

bated only with IgM (biotinylated) and streptavidin-PE. The addi-

tion of the primary antibody allowed us to obtain the intensity

values (calculated with FlowJo software [Tree Star]) for the IIH6-

positive fibroblasts. Statistical analysis was performed with the

use of unpaired two-tailed t tests.

Zebrafish Knockdown
We extracted zebrafish RNA at different developmental stages

and carried out reverse transcription and PCR as previously

described.20 Primer sequences are in Table S3. To knock down

zebrafish gmppb, we obtained a splice-blocking morpholino oligo-

nucleotide (MO) (sequence 50-GGACCAGCTGAAAACAGAAACA

GAT-30) from Gene Tools. This was injected into 1- to 4-cell stage

Tuebingen Long Fin zebrafish embryos. Unless otherwise stated,

it was coinjected with p53 MO. The sequences of the p53 and

dag1 MOs have previously been described.43,44

To assess muscle pathology in zebrafish, we used immunofluo-

rescent imaging as previously described44 to study the following

proteins: filamentous actin with the use of Alexa-Fluor-594-conju-

gated phalloidin (Life Technologies) and b-DG (monoclonal,

NCL-b-DG from Leica Microsystems). We also performed an

Evans blue dye (EBD) assay and immunoblotting of zebrafish

Figure 1. MRI Reveals Structural Brain
Abnormalities in P1 and P6
On sagittal views of T1-weighted MRI,
there is evidence of cerebellar hypoplasia
in P6 (A) at 2 years of age and pontine
and cerebellar hypoplasia in P1 (C) at
6 years of age. Coronal views reveal evi-
dence of cerebellar inferior vermian hypo-
plasia on T2-weighted MRI in P6 (B) and
on T1-weighted MRI in P1 (D).
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microsome-pellet proteins as previously described and quantified

the immunoblot results by using ImageJ software.20,45 To assess

the significance of the results of the EBD assay, we used unpaired

two-tailed t tests.

Results

Identification and Characterization of GMPPB

Variants in Individuals Affected by CMD

We performed exome sequencing in P1, who is affected by

a severe form of CMD with brain involvement, as part of

the UK10K rare cohort, and variants were filtered as out-

lined in Table S4. We identified 22 high-quality loss-of-

function heterozygous variants in P1. Only two of these

candidate genes showed possible compound heterozygosi-

ty and are therefore consistent with the expected recessive

mode of inheritance with unrelated parents: alpha 1, 2-

mannosidase (MAN1B1 [MIM 604346]) and GMPPB.

Mutations in MAN1B1 can cause nonsyndromic and

syndromic intellectual disability without microcephaly.46

Because neither muscular dystrophy nor brain malforma-

tion is a feature of MAN1B1 mutations, it is unlikely that

these variants explain the phenotype of P1. GMPPB cata-

lyzes the formation of GDP-mannose from mannose-1-

phosphate and GTP.47 GDP-mannose is required in four

glycosylation pathways (Figure 2), including O-mannosy-

lation of membrane and secretory glycoproteins, such as

a-DG. Mutations in other members of this pathway are

known to cause dystroglycanopathy.14,15 We therefore

considered variants in GMPPB as the likely cause of disease

in P1.

RT-PCR of human fetal and adult RNA from various tis-

sues showed that GMPPB is transcribed as two isoforms

in humans (RefSeq NM_013334.2 and NM_021971.1). In

contrast to NM_013334.2, NM_021971.1 was strongly ex-

pressed in all tested tissues, including brain and skeletal

muscle (Figure S2). All listed mutations correspond to

NM_021971.1.

The GMPPB mutations in P1 are c.220C>T (p.Arg74*)

and c.1000G>A (p.Asp334Asn). Through an international

collaborative effort, we identified recessive GMPPB muta-

tions in seven further dystroglycanopathy cases (P2–P8)

with phenotypes ranging from severe CMD with the

inability to walk to severe intellectual disability and epi-

lepsy to later-onset phenotypes resembling LGMD with

only mild intellectual disability or no evidence of brain

involvement. P2 has the compound heterozygous GMPPB

mutations c.64C>T (p.Pro22Ser) and c.1000G>A (p.As-

p334Asn). P3, P4, and P8 carry the homozygous

c.553C>T (p.Arg185Cys) mutation. P5 and P6 carry the

c.95C>T (p.Pro32Leu) and c.860G>A (p.Arg287Gln) mu-

tations, and P7 has the heterozygous mutations c.79G>C

(p.Asp27His) and c.988G>A (p.Val330Ile). No MAN1B1

variants were found in the other individuals who were

exome sequenced (P3, P5, P6, and P8). None of these indi-

viduals are related, and although the recurrent mutations

in individuals of related ethnic origin could be due to

founder effects (i.e., P1 and P2 share one variant, and P3

and P4 are homozygous for the same change), we also

found the latter change in P8, who is of a completely

different origin. The asymptomatic parents of P1, P2, P5,

P6, P7, and P8 and the mother of P4 were found to be het-

erozygous carriers of the variants described.

Of the eight variants described, five have not been previ-

ously reported. The three that have (c.860G>A, c.79G>C,

and c.988G>A) are very rare and have a minor allele fre-

quency of less than or equal to 0.001 according to data

from the UK10K twins cohort or the ClinSeq study

Figure 2. GMPPB Function, Structure, and Identified Substitutions
(A) The function of GMPPB in glycosylation pathways.
(B) GMPPB has 360 amino acids and two predicted Pfam functional domains: a nucleotidyl transferase domain and a bacterial transferase
hexapeptide domain. In this schematic diagram, the blocks represent regions encoded by exons and the substitutions identified in in-
dividuals with dystroglycanopathy are shown. The following abbreviation is used: H, homozygous.

The American Journal of Human Genetics 93, 29–41, July 11, 2013 33



(Table S5). This is compatible with CMD’s frequency,

which has been estimated to be around 1 in 50,000–

100,000.48

We performed alignments by using the human GMPPB

sequence against the genomes of five diverse eukaryotic

species and found that each has a GMPPB ortholog

that is at least 63.8% identical to the human sequence

(Table S6 and Figure S3). We found that of the eight vari-

ants described, five (c.64C>T, c.95C>T, c.1000G>A,

c.553C>T, and c.988G>A) affect amino acids that are

conserved throughout all species tested, suggesting func-

tional importance (Figure S3). Although the amino acid

affected by the c.220C>T mutation in P1 is not highly

conserved, it is located in the nucleotidyl transferase

domain (Pfam ID PF00483) (Figure 2), and the mutation

is predicated to cause a severely truncated protein in addi-

tion to nonsense-mediated mRNA decay. Of the eight var-

iants described, five are within the nucleotidyl transferase

domain. Interestingly, all affected individuals have at least

one alteration in this domain (Figure 2).

Individuals with GMPPB Mutations Have

Hypoglycosylated a-DG in Muscle Biopsy

To assess the muscle pathology, we examined muscle

biopsies of all affected individuals except P5 and P8. In all

cases, the muscle biopsies showed features of a muscular

dystrophy with abnormal variation in fiber size, necrosis,

regeneration, excess endomysial connective tissue, and an

increase in internal nuclei and inflammatory infiltrates

(Figure 3 and Figures S4 and S5). Immunolabeling of

laminin-a2 with antibodies to both the 80 and 300 kDa

fragments showed reduced labeling of some fibers, but

not in all cases (data not shown). Labeling of b-DG was

invariably normal, whereas labelingwith the IIH6 antibody

was variably reduced. In P3 and P4, the reduction of the gly-

Figure 3. a-DG Glycosylation Is Reduced
in Muscle Biopsies of Affected Individuals
with GMPPB Mutations
An examination of skeletal-muscle cryo-
sections from the control (A, E, I, and M),
P1 (B, F, J, and N), P2 (C, G, K, and O),
and P7 (D, H, L, and P) revealed that glyco-
sylated a-DG immunolabeling (assessed
with IIH6) was moderately reduced in indi-
viduals (P1, P2, and P7) withGMPPBmuta-
tions and that b-DG and core a-DG were
well preserved. Stains are as follows: hema-
toxylin and eosin (A–D), b-DG (E–H), a-DG
IIH6 (I–L), and a-DG core (M–P).

cosylated epitope on a-DG was also

confirmed with the VIA4-1 antibody,

whereas the staining obtained with

a-DG GT20ADG, a goat polyclonal

antibody, which recognizes the core

protein, was normal (Figure S4).

Immunoblots from skeletal-muscle

biopsies confirmed the reduction in

glycosylated a-DG in P1, P4, and P8 compared to the con-

trol (Figure 4 and Figure S6); in P4, the lower-molecular-

weight band identified by the core a-DG antibody and

the reduction with the laminin overlay also suggested

hypoglycosylated a-DG (Figure 4). Immunoblotting of

fibroblast lysate with the IIH6 antibody showed that there

was substantially less a-DG glycosylation in P1, P2, P4, and

P5 than in controls and only a lesser reduction in P6

(Figure 4). Flow cytometry showed that there was signifi-

cantly less glycosylated a-DG in fibroblasts from P1, P2,

P4, P5, P6, and P7 (p < 0.05) than in controls, as shown

by the MFI of IIH6, as well as the percentage of fibroblasts

that were positive for the IIH6 epitope (Figure 4).

Next, we transfected fibroblasts from P1 with wild-type

GMPPB cDNA to determine whether the reduced amount

of a-DG glycosylation of this individual was related to

dysfunctional GMPPB. The amount of glycosylated a-DG

was increased as determined by the average MFI of IIH6

with the use of flow cytometry (Figure S7 and Table S7),

suggesting that wild-type GMPPB complemented the

altered GMPPB. Similar to the wild-type healthy control

fibroblasts, 23.5% of the total transfected population of

fibroblasts had a higher MFI (76.2) than the untrans-

fected fibroblasts. Transfection of the wild-type gene into

control fibroblasts did not alter the MFI of IIH6 (data not

shown). These results suggest that GMPPB mutations are

the cause of reduced a-DG glycosylation for P1.

In view of the role of GMPPB in multiple glycosylation

reactions (Figure 2), we tested N-glycosylation of serum

transferrin, abnormal in congenital disorders of glycosyla-

tion (CDG). For all affected individuals, routine diagnostic

screening for CDG by transferrin isoelectric focusing

showed normal results, which was confirmed by highly

sensitive mass spectrometry of intact transferrin for P6

(Figure S8).
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Subcellular Localization of Wild-Type and Mutant

GMPPB

To further elucidate the effects of the missense muta-

tions found in P1–P8, we introduced the mutations

c.1000G>A, c.64C>T, c.553C>T, c.95C>T, c.860G>A,

c.79G>C, and c.988G>A into wild-type GMPPB and

studied the localization of the resultant altered proteins in

C2C12 myoblasts. Wild-type GMPPB, a soluble enzyme,49

localized to the cytoplasm (Figure 5). The mutations

c.1000G>A (found in P1 and P2), c.95C>T and

c.860G>A (both found in P5 and P6), and c.988G>A

(found in P7) caused the protein to form aggregates within

the cytoplasm (Figure 5). The mutation c.64C>T (found in

P2) caused GMPPB to aggregate near membrane protru-

sions into the cytoplasm (Figure 5). The mutations

c.553C>T (found in P3, P4, and P8) and c.79G>C (found

Figure 4. Immunoblots and Flow Cytometry Confirm that a-DG Glycosylation Is Reduced in Muscle and Fibroblasts of Affected
Individuals with GMPPB Mutations
(A) Immunoblot analysis of skeletal-muscle protein lysates from P1 and P4. (Ai) The membrane was incubated with IIH6 and b-DG
antibodies. P1 shows a reduction in a-DG glycosylation. (Aii) For P4, WGA-enriched skeletal-muscle homogenates were used, and the
immunoblot was probed with IIH6, a-DG core, and b-DG antibodies, as well as by laminin overlay. b-DG appears as a possible doublet
in P1 and P4 (and P8, Figure S6).
(B) Immunoblot analysis of fibroblast protein lysate from P1, P2, P4, P5, and P6. The membrane was incubated with IIH6 and b-DG
antibodies. a-DG glycosylation is reduced in fibroblasts of individuals with GMPPB mutations.
(C) Flow cytometry of fibroblasts revealed reduced a-DG glycosylation for P1, P2, P4, P5, P6, and P7. This histogram shows the MFI of
IIH6 staining for a secondary-only control, P1, P2, P4, P5, P6, P7, and a control fibroblast cell line. TheMFI of the populations positive for
IIH6 were 88.95 for the control, 19.6 for P1, 30.15 for P2, 26.34 for P4, 14.60 for P5, 28.63 for P6, and 45.3 for P7 (n¼ 6 for all). There was
a statistically significant (p< 0.05) reduction in a-DG glycosylation in fibroblasts from the six individuals tested compared to controls, as
determined by the average MFI of IIH6. The percentage of fibroblasts (out of a minimum of 10,000) that were positive for the IIH6
epitope was 85% for the control, 27% for P1, 16% for P2, 45% for P4, 60% for P5, 50% for P6, and 65% for P7. A IIH6-positive gate
was set up with a negative control (where primary antibody was omitted) for all fibroblast cell lines tested and the control.
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in P7) caused GMPPB to remain evenly distributed

throughout the cytoplasm and to have no discernible

changes compared with wild-type GMPPB (Figure 5).

Knockdown of the GMPPB Ortholog in Zebrafish

Embryos Recapitulates Features Characteristic of

Dystroglycanopathies

In order to gather additional evidence of the role ofGMPPB

in vivo, we studied zebrafish (Danio rerio) gmppb. There is

high sequence homology between the proteins encoded

by these genes (81.4% identical; Table S6). We confirmed

by RT-PCR that zebrafish gmppb is expressed throughout

early embryonic development (Figure S9). To knock

down zebrafish gmppb, we used a splice-blocking MO

that targets the intron 4-exon 5 boundary within the

nucleotidyl transferase domain (Figure S10).

Subsequently, we extracted RNA from wild-type and

MO-injected embryos and performed RT-PCR with primers

flanking the MO binding site (Figure S10). Compared to

wild-type embryos, gmppb-MO-injected embryos (mor-

phants) showed a clear reduction of the normal gmppb

transcripts, whereas the amount of a housekeeping gene

(actb1) remained roughly equivalent (Figure S10). This

suggests that the gmppb MO specifically knocks down

gmppb.

Morphologically, gmppb morphants were shorter than

wild-type uninjected embryos at 48 hr postfertilization

(hpf) and often had bent tails. Other phenotypes included

hypopigmentation, micropthalmia, hydrocephalus, and

reduced motility (Figure 6, Figure S11, and data not

shown). The difference in diameter between the eyes of

wild-type and gmppb morphant embryos was statistically

significant (p < 1 3 10�7; Figure S11). Although none of

our cases reported micropthalmia, this is a phenotype

that is common in individuals with severe forms of

CMD, such as WWS and MEB.3,4,20,23–25

To characterize muscle defects in gmppb-knockdown

zebrafish embryos, we used phalloidin to label filamentous

actin, along with immunostaining with antibodies against

b-DG (which localizes to the myosepta, the connective tis-

sue to which muscle fibers anchor). We observed that the

muscle fibers in gmppb morphants were sparse and disor-

dered. Furthermore, fibers were frequently observed to

span two somites, indicating damage or incomplete devel-

opment of the myosepta (Figure 6).

To further explore themuscle phenotypes in gmppbmor-

phants, we injected EBD into the pericardium of embryos

at 2 days postfertilization. EBD is an azo dye that binds

to proteins such as albumin and is transported in the

serum. It fluoresces upon protein binding and infiltrates

muscle where there are lesions between muscle fibers

(interfiber spaces) or where there is sarcolemmal dam-

age.50 Compared with uninjected control embryos, gmppb

morphants had significantly more EBD accumulation

within interfiber spaces (p < 0.001; Figure 6). In addition,

EBD infiltrated both retracted and some intact muscle

fibers in gmppb-knockdown embryos, suggesting that

Figure 5. GMPPB Mutations Can Cause Mislocalization of
GMPPB in Cultured Myoblasts
C2C12 myoblasts were transfected with GMPPB pcDNA 3.1 V5/
HIS-TOPO that was either wild-type or had the missense mutation
c.1000G>A (p.Asp334Asn), c.64C>T (p.Pro22Ser), c.553C>T
(p.Arg185Cys), c.95C>T (p.Pro32Leu), c.860G>A (p.Arg287Gln),
c.79G>C (p.Asp27His), or c.988G>A (p.Val330Ile). Compared to
the wild-type, the mutations c.1000G>A, c.64C>T, c.95C>T,
c.860G>A, and c.988G>A caused the protein to localize differ-
ently and aggregate, whereas the mutations c.553C>T and
c.79G>C did not visibly alter the subcellular localization of
GMPPB and the enzyme remained distributed evenly in the
cytoplasm.
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sarcolemma integrity was compromised prior to muscle-

fiber breakdown (Figure 6).

Next, we investigated whether the laminin-binding

glycan on a-DG is reduced in gmppb morphants. To do

this, we performed immunoblots with the IIH6 antibody

on membrane proteins enriched from wild-type embryos

and gmppb morphants, as well as dag1 morphants as a

negative control. After normalization to g-tubulin loading

control, gmppbmorphants showed a slight but clear reduc-

tion in IIH6 levels (71% of that of the wild-type embryos)

and dag1 morphants showed a strong reduction in IIH6

(15% of that of the wild-type embryos) (Figure 6). To

confirm this finding, we performed double immunostain-

ing with the IIH6 antibody and an antibody against lami-

nins. In wild-type embryos, laminin and glycosylated

a-DG colocalized at the myosepta. In gmppb morphants,

the IIH6 staining was severely reduced and laminin stain-

ing revealed widened myosepta, indicating a reduction in

glycosylation of a-DG associated with abnormal base-

ment-membrane structure (Figure S12).

Discussion

Here, we report the identification of GMPPB mutations in

eight individuals with dystroglycanopathy by exome

and Sanger sequencing. Immunohistochemistry showed

reduced glycosylation of a-DG in muscle biopsies from

affected individuals, and this finding was confirmed in

available fibroblasts with the use of immunoblotting and

flow cytometry, which revealed a reduction in the IIH6

signal. Transfection of an affected individual’s fibroblasts

Figure 6. Zebrafish Embryos with gmppb Knockdown HaveMorphological Defects, DamagedMuscle, and Hypoglycosylated a-DG at
48 hpf
(A) Bright-fieldmicroscopy of live embryos showsmorphological defects of the gmppb-MO-injected embryos (injected with gmppb splice-
blocking MO 3ng þ p53 MO 6ng) as compared to uninjected wild-type embryos.
(B) Phalloidin staining of filamentous actin (red) and immunostaining with an antibody against b-DG (green).
(C) Live gmppb-MO-injected embryos injected with EBD (red) and imaged by confocal microscopy. Some fibers showed EBD infiltration,
indicating damage to the sarcolemma (green arrow), and other fibers detached from the myosepta and retracted (yellow arrow) and thus
left a space. The following abbreviation is used: DIC, differential interference contrast. The scale bar represents 25 mm.
(D) gmppbmorphants have significantly more interfiber spaces than do wild-type uninjected embryos. The horizontal dotted line shows
the median.
(E) An immunoblot shows a reduction in a-DG glycosylation. Percentage figures indicate the intensity ofmorphant bands relative to that
of the wild-type and are adjusted for the g-tubulin loading control. ‘‘gmppbMO’’ indicates embryos injected with gmppb MO 3ng þ p53
MO 6ng, and ‘‘dag1 MO’’ indicates embryos injected with dag1 translation-blocking morpholino (5 ng).
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with wild-type GMPPB increased a-DG glycosylation,

providing additional evidence that the GMPPB mutations

carried by this individual are pathogenic and cause dystro-

glycanopathy.

Subcellular-localization studies indicated that GMPPB

localizes to the cytosol, in agreement with its role in cyto-

solic synthesis of nucleotide sugars. This is consistent with

the known localization of GDP-MP, theGMPPB ortholog in

the protozoa L. mexicana.49 Assessment of the localization

of altered GMPPB suggested that several of the altered

enzymes formed aggregates within the cytoplasm or close

to membrane protrusions into the cytoplasm and presum-

ably interfered with the enzymatic function. Knocking

down zebrafish gmppb recapitulated several aspects of

the human phenotypes, including muscular dystrophy.

Aspects of the phenotype were similar to those seen

when other dystroglycanopathy genes are knocked down

in zebrafish.20,24,50

Recent studies have revealed new details about a-DG

glycosylation. For example, a highly specific O-mannosy-

lated structure required for a-DG binding to extracellular

ligands has been identified.51,52 Moreover, phosphoryla-

tion of an O-mannosyl glycan in the mucin-like domain

of a-DG is required for its proper function.53 Recent

mass-spectrometry studies have revealed the heterogeneity

and complexity of a-DG O-mannosylation,54,55 a rare type

of glycosylation that is particularly abundant on a-DG and

clearly and specifically disrupted by mutations in well-

characterized O-mannosyltransferase-encoding genes like

POMT1, POMT2, and POMGNT1.3,4,12,13 More recently,

mutations in genes encoding upstream components of

the endoplasmic reticulum (ER) glycosylation pathway

have been demonstrated to also cause dystroglycanopa-

thies.14,15

GMPPB catalyzes the synthesis of GDP-mannose from

GTP and mannose-1-phosphate. GDP-mannose is the sub-

strate of cytosolic mannosyltransferases required for the

synthesis of the core N-glycan structure, and it is required

for the synthesis of Dol-P-Man in the ERmembrane. Dol-P-

Man synthesis is catalyzed by the DPM synthase complex,

consisting of DPM1, DPM2, and DPM3. Dol-P-Man is the

mannose donor required for all four mannosylation

reactions that occur in the ER: O-mannosylation, C-man-

nosylation, N-glycosylation, and glycosylphosphatidyli-

nositol-anchor formation.56 Substitutions in proteins

required for the synthesis of Dol-P-Man could therefore

theoretically perturb any of these pathways. Indeed, indi-

viduals with mutations in DPM2 and DPM3 have, in addi-

tion to a dystroglycanopathy, features evocative of a defect

in N-glycosylation, such as abnormal glycosylation of

transferrin, which is characteristic of CDG.14,15 However,

in all our cases of mutant GMPPB, we found no evidence

of perturbed transferrin glycoforms.

There are a number of possible explanations for this

observation. For example, Dol-P-Man might be used to

different extents in the N-glycosylation and O-mannosyla-

tion pathways. Previous research has shown that two

enzymes in the glycosylation pathway compete for a com-

mon substrate and can use their substrates differentially,

supporting this hypothesis.57 Alternatively, N-glycosyla-

tion could occur before O-mannosylation and the amount

of Dol-P-Man would therefore be depleted by N-glycosyla-

tion before O-mannosylation starts.

Given what we know about the importance of glycosyl-

ation for a-DG function, it appears likely that the patho-

genic mutations we have identified in GMPPB impair

GMPPB function and thereby reduce the amount of

GDP-mannose available for O-mannosylation of a-DG

and ultimately cause the CMD phenotype. Although the

full spectrum of clinical phenotypes associated with muta-

tions in GMPPB has yet to be seen, the eight individuals

described here demonstrate a wide range of muscle

weakness, from a mild LGMD-like phenotype to a severe

MEB- and/or FCMD-like phenotype, as well as cardiac

involvement in the oldest surviving individuals; this

phenotype range resembles the spectrum of phenotypes

described for mutations in FKRP, FKTN, and ISPD. Features

that were relatively common in individuals with GMPPB

mutations but rare in other genotypes relate to the

ophthalmologic finding of cataracts, observed not only

in individuals with MEB- and/or FCMD-like phenotypes

but also in individuals with CMD-MR (CMD with mental

retardation) and LGMD-MR (LGMD with mental retarda-

tion) phenotypes.

GMPPB orthologs have been knocked down in various

species, including Saccharomyces cerevisiae, Aspergillus fumi-

gatus, Arabidopsis thaliana, Solanum tuberosum, Trypano-

soma brucei, and Leishmania mexicana.49,58–63 This caused

glycosylation defects and a range of pathogenic pheno-

types from defective cell growth to lethality. This severity

suggests that complete loss of function of GMPPB might

be lethal. In this respect, it is interesting to note that we

did not identify any case with two null alleles, and it is

possible that some GMPPB function was retained in our

cases.

In humans, GMPPB has a paralog, GMPPA. The proteins

encoded by these genes are 30% identical to each other. In

pigs, GMPPB and GMPPA act as a complex (GMPP) to cata-

lyze the synthesis of both GDP-mannose and GDP-Glc

(they have a higher affinity for synthesizing GDP-Glc).

GMPPB alone has a very high affinity for synthesizing

GDP-mannose and a low but detectible affinity for synthe-

sizing GDP-Glc.47 Although to our knowledge the affinity

of GMPPA for synthesizing GDP-Man has not been inves-

tigated, these results suggest some functional overlap

between GMPPA and GMPPB. If this is true for humans,

GMPPA might be able to synthesize some GDP-mannose

in our CMD cases, which could contribute to the unexpect-

edly mild phenotype.

In summary, by using a combination of exome and

Sanger sequencing, we have identified mutations in

GMPPB in eight individuals with a wide spectrum of dys-

troglycanopathy phenotypes, ranging from CMD with

structural brain involvement to LGMD. The spectrum
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and overall frequency of the conditions resulting from

GMPPB mutations appear to be as wide as those reported

to result from mutations in genes such as FKRP, FKTN, or

ISPD.22,26 This brings the total number of genes in which

mutations can cause a dystroglycanopathy to 15. Although

many details of the complex glycosylation of a-DG are still

unknown, the picture becomes a little more complete with

each gene discovered.
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