182 research outputs found
Using Dust from Asteroids as Regolith Microsamples
More robust links need to be forged between meteorites and their parent bodies to understand the composition, diversity and distribution of the asteroids. A major link can be sample analysis of the parent body material and comparison with meteorite data. Dust is present around all airless bodies, generated by micrometeorite impact into their airless surfaces, which in turn lofts regolith particles into a "cloud" around the body. The composition, flux, and size distribution of dust particles can provide insight into the geologic evolution of airless bodies. For example, the Cassini Cosmic Dust Analyzer detected salts and minerals emitted by plumes at Enceladus, evidence for a subsurface ocean with a silicate seafloor. Dust analysis instruments may enable future missions to obtain elemental, isotopic and mineralogical composition of regolith particles without returning the samples to terrestrial laboratories
Scientific Preparations for Lunar Exploration with the European Lunar Lander
This paper discusses the scientific objectives for the ESA Lunar Lander
Mission, which emphasise human exploration preparatory science and introduces
the model scientific payload considered as part of the on-going mission
studies, in advance of a formal instrument selection.Comment: Accepted for Publication in Planetary and Space Science 51 pages, 8
figures, 1 tabl
Cubesat Electrostatic Dust Analyzer (CEDA) for Measuring Regolith Dust Transport on Airless Bodies
The CubeSat Electrostatic Dust Analyzer (CEDA) is developed by the Dust BUSTER student team at the University of Colorado for exploring electrostatic dust transport processes on the surfaces of airless bodies such as asteroids and the Moon. CEDA is a 6U cubesat that consists of a 2U dust analyzer module and an autonomous repositioning system (ARS). This instrument measures the charge, velocity, and mass of lofted dust particles, and provides the lofting rate in order to estimate the efficiency of electrostatic dust transport in surface processes. The dust analyzer module consists of two Dust Trajectory Sensor (DTS) units with a Deflection Field Electrodes (DFE) unit in between them. A dust particle can enter from either end of the analyzer and its charge and velocity are measured using the wire-electrodes on which the charge is induced as the particle passes through. The charged particle is deflected in the DFE where its mass is determined from the deflection trajectory. The ARS, consisting of the sun sensors, cover doors and tilting mechanisms, repositions the instrument for optimized dust measurement on the surface. The communication needs to be provided by the mother spacecraft
Detection of a strongly negative surface potential at Saturn's moon Hyperion
On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (~ −200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator
On the Mechanism of Energy Transfer in the Plasma-Propellant Interaction
A coupled plasma sheath/ablation model is developed for electrothermal chemical gun applications. By combining a commonly employed collisional sheath model with a previous ablation model, the convective heat flux as a function of time to the propellant bed is determined for two potential electrothermal chemical gun propellants, XM39 and JA2. It is found that the convective heat flux varies smoothly from a nearly collisionless to a fully collisional regime over the short duration of the plasma pulse. The possibility of determining an accurate estimate of the amount of heat flux to the propellant bed due to radiation from the bulk plasma presents itself.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57361/1/385_ftp.pd
LADEE Science Results and Implications for Exploration
NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results
Linking meteorites to their asteroid parent bodies: The capabilities of dust analyzer instruments during asteroid flybys
Linking meteorites to their asteroid parent bodies remains an outstanding issue. Space-based dust characterization using impact ionization mass spectrometry is a proven technique for the compositional analysis of individual cosmic dust grains. Here we investigate the feasibility of determining asteroid compositions via cation mass spectrometric analyses of their dust ejecta clouds during low (7–9 km s−1) velocity spacecraft flybys. At these speeds, the dust grain mass spectra are dominated by easily ionized elements and molecular species. Using known bulk mineral volume abundances, we show that it is feasible to discriminate the common meteorite classes of carbonaceous chondrites, ordinary chondrites, and howardite–eucrite–diogenite achondrites, as well as their subtypes, relying solely on the detection of elements with ionization efficiencies of ≤700 or ≤800 kJ mol−1, applicable to low (~7 km s−1) and intermediate (~9 km s−1) flyby speed scenarios, respectively. Including the detection of water ion groups enables greater discrimination between certain meteorite types, and flyby speeds ≥10 km s−1 enhance the diagnostic capabilities of this technique still further. Although additional terrestrial calibration is required, this technique may allow more unequivocal asteroid-meteorite connections to be determined by spacecraft flybys, emphasizing the utility of dust instruments on future asteroid missions
Impact ionization mass spectra of anorthite cosmic dust analogue particles
Anorthite, the Ca-rich end-member of plagioclase feldspar, is a dominant mineral component of the Lunar highlands. Plagioclase feldspar is also found in comets, meteorites and stony asteroids. It is therefore expected to contribute to the population of interplanetary (and circumplanetary) dust grains within the solar system. After coating micron- and submicron-sized grains of Anorthite with a conductive layer of Platinum, the mineral was successfully accelerated to hypervelocity speeds in the Max Planck Institut für Kernphysik’s Van de Graaff accelerator. We present impact ionization mass spectra
generated following the impacts of anorthite grains with a prototype mass spectrometer (the Large Area Mass Analyser, LAMA) designed for use in space, and discuss the behavior of the spectra with increasing impact energy. Correlation analysis is used to identify the compositions and sources of cations present in the spectra, enabling the identification of several molecular cations (e.g., CaAlO2, CaSiO2, Ca2AlO3/CaAlSi2O2)
which identify anorthite as the progenitor bulk grain material
Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter
The electric and magnetic field instrument suite FIELDS on board the NASA Parker Solar Probe and the radio and plasma waves instrument RPW on the ESA Solar Orbiter mission that explore the inner heliosphere are sensitive to signals generated by dust impacts. Dust impacts have been observed using electric field antennas on spacecraft since the 1980s and the method was recently used with a number of space missions to derive dust fluxes. Here, we consider the details of dust impacts, subsequent development of the impact generated plasma and how it produces the measured signals. We describe empirical approaches to characterise the signals and compare these in a qualitative discussion of laboratory simulations to predict signal shapes for spacecraft measurements in the inner solar system. While the amount of charge production from a dust impact will be higher near the Sun than observed in the interplanetary medium before, the amplitude of pulses is determined by the recovery behaviour that is different near the Sun since it varies with the plasma environment
- …
