391 research outputs found

    Weyl's law and quantum ergodicity for maps with divided phase space

    Full text link
    For a general class of unitary quantum maps, whose underlying classical phase space is divided into several invariant domains of positive measure, we establish analogues of Weyl's law for the distribution of eigenphases. If the map has one ergodic component, and is periodic on the remaining domains, we prove the Schnirelman-Zelditch-Colin de Verdiere Theorem on the equidistribution of eigenfunctions with respect to the ergodic component of the classical map (quantum ergodicity). We apply our main theorems to quantised linked twist maps on the torus. In the Appendix, S. Zelditch connects these studies to some earlier results on `pimpled spheres' in the setting of Riemannian manifolds. The common feature is a divided phase space with a periodic component.Comment: Colour figures. Black & white figures available at http://www2.maths.bris.ac.uk/~majm. Appendix by Steve Zelditc

    Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer

    Get PDF
    Background: Adiposity traits have been associated with risk of many cancers in observational studies, but whether these associations are causal is unclear. Mendelian randomization (MR) uses genetic predictors of risk factors as instrumental variables to eliminate reverse causation and reduce confounding bias. We performed MR analyses to assess the possible causal relationship of birthweight, childhood and adult body mass index (BMI), and waist-hip ratio (WHR) on the risks of breast, ovarian, prostate, colorectal and lung cancers. Methods: We tested the association between genetic risk scores and each trait using summary statistics from published genome-wide association studies (GWAS) and from 51 537 cancer cases and 61 600 controls in the Genetic Associations and Mechanisms in Oncology (GAME-ON) Consortium. Results: We found an inverse association between the genetic score for childhood BMI and risk of breast cancer [odds ratio (OR)=0.71 per standard deviation (s.d.) increase in childhood BMI; 95% confidence interval (CI): 0.60, 0.80; P=6.5×10-5). We also found the genetic score for adult BMI to be inversely associated with breast cancer risk (OR=0.66 per s.d. increase in BMI; 95% CI: 0.57, 0.77; P=2.5×10-7), and positively associated with ovarian cancer (OR=1.35; 95% CI: 1.05, 1.72; P=0.017), lung cancer (OR=1.27; 95% CI: 1.09, 1.49; P=2.9×10-3) and colorectal cancer (OR=1.39; 95% CI: 1.06, 1.82, P=0.016). The inverse association between genetically predicted adult BMI and breast cancer risk remained even after adjusting for directional pleiotropy via MR-Egger regression. Conclusions: Findings from this study provide additional understandings of the complex relationship between adiposity and cancer risks. Our results for breast and lung cancer are particularly interesting, given previous reports of effect heterogeneity by menopausal status and smoking status.</p

    Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    Get PDF
    Abstract Background Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. Methods We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Results Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10−6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10−5, we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10−5), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. Conclusions This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population

    Evidence of a Causal Association Between Insulinemia and Endometrial Cancer: A Mendelian Randomization Analysis.

    Get PDF
    BACKGROUND: Insulinemia and type 2 diabetes (T2D) have been associated with endometrial cancer risk in numerous observational studies. However, the causality of these associations is uncertain. Here we use a Mendelian randomization (MR) approach to assess whether insulinemia and T2D are causally associated with endometrial cancer. METHODS: We used single nucleotide polymorphisms (SNPs) associated with T2D (49 variants), fasting glucose (36 variants), fasting insulin (18 variants), early insulin secretion (17 variants), and body mass index (BMI) (32 variants) as instrumental variables in MR analyses. We calculated MR estimates for each risk factor with endometrial cancer using an inverse-variance weighted method with SNP-endometrial cancer associations from 1287 case patients and 8273 control participants. RESULTS: Genetically predicted higher fasting insulin levels were associated with greater risk of endometrial cancer (odds ratio [OR] per standard deviation = 2.34, 95% confidence internal [CI] = 1.06 to 5.14, P = .03). Consistently, genetically predicted higher 30-minute postchallenge insulin levels were also associated with endometrial cancer risk (OR = 1.40, 95% CI = 1.12 to 1.76, P = .003). We observed no associations between genetic risk of type 2 diabetes (OR = 0.91, 95% CI = 0.79 to 1.04, P = .16) or higher fasting glucose (OR = 1.00, 95% CI = 0.67 to 1.50, P = .99) and endometrial cancer. In contrast, endometrial cancer risk was higher in individuals with genetically predicted higher BMI (OR = 3.86, 95% CI = 2.24 to 6.64, P = 1.2x10(-6)). CONCLUSION: This study provides evidence to support a causal association of higher insulin levels, independently of BMI, with endometrial cancer risk.This study was supported by MRC grant MC_UU_12015/1 and by the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement n° 115372 (contributions from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies). ANECS recruitment was supported by project grants from the National Health and Medical Research Council of Australia (ID#339435), The Cancer Council Queensland (ID#4196615) and Cancer Council Tasmania (ID#403031 and ID#457636). SEARCH recruitment was funded by a programme grant from Cancer Research UK [C490/A10124]. Case genotyping was supported by the National Health and Medical Research Council (ID#552402). Control data was generated by the Wellcome Trust Case Control Consortium (WTCCC), and a full list of the investigators who contributed to the generation of the data is available from the WTCCC website. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. Funding for this project was provided by the Wellcome Trust under award 085475. Recruitment of the QIMR controls was supported by the National Health and Medical Research Council of Australia (NHMRC). The University of Newcastle, the Gladys M Brawn Senior Research Fellowship scheme, The Vincent Fairfax Family Foundation, the Hunter Medical Research Institute and the Hunter Area Pathology Service all contributed towards the costs of establishing the Hunter Community Study. K.T.N. was supported by the Gates Cambridge Trust. R.K.S. is supported by the Wellcome Trust (grant number WT098498). A.B.S. is supported by the National Health and Medical Research Council (NHMRC) Fellowship Scheme. D.F.E. is a Principal Research Fellow of Cancer Research UK. A.M.D is supported by the Joseph Mitchell Trust.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/jnci/djv17

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    The utilisation of health research in policy-making: Concepts, examples and methods of assessment

    Get PDF
    The importance of health research utilisation in policy-making, and of understanding the mechanisms involved, is increasingly recognised. Recent reports calling for more resources to improve health in developing countries, and global pressures for accountability, draw greater attention to research-informed policy-making. Key utilisation issues have been described for at least twenty years, but the growing focus on health research systems creates additional dimensions. The utilisation of health research in policy-making should contribute to policies that may eventually lead to desired outcomes, including health gains. In this article, exploration of these issues is combined with a review of various forms of policy-making. When this is linked to analysis of different types of health research, it assists in building a comprehensive account of the diverse meanings of research utilisation. Previous studies report methods and conceptual frameworks that have been applied, if with varying degrees of success, to record utilisation in policy-making. These studies reveal various examples of research impact within a general picture of underutilisation. Factors potentially enhancing utilisation can be identified by exploration of: priority setting; activities of the health research system at the interface between research and policy-making; and the role of the recipients, or 'receptors', of health research. An interfaces and receptors model provides a framework for analysis. Recommendations about possible methods for assessing health research utilisation follow identification of the purposes of such assessments. Our conclusion is that research utilisation can be better understood, and enhanced, by developing assessment methods informed by conceptual analysis and review of previous studies

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Genome-Wide Association Study of Circulating Estradiol, Testosterone, and Sex Hormone-Binding Globulin in Postmenopausal Women

    Get PDF
    Genome-wide association studies (GWAS) have successfully identified common genetic variants that contribute to breast cancer risk. Discovering additional variants has become difficult, as power to detect variants of weaker effect with present sample sizes is limited. An alternative approach is to look for variants associated with quantitative traits that in turn affect disease risk. As exposure to high circulating estradiol and testosterone, and low sex hormone-binding globulin (SHBG) levels is implicated in breast cancer etiology, we conducted GWAS analyses of plasma estradiol, testosterone, and SHBG to identify new susceptibility alleles. Cancer Genetic Markers of Susceptibility (CGEMS) data from the Nurses’ Health Study (NHS), and Sisters in Breast Cancer Screening data were used to carry out primary meta-analyses among ∼1600 postmenopausal women who were not taking postmenopausal hormones at blood draw. We observed a genome-wide significant association between SHBG levels and rs727428 (joint β = -0.126; joint P = 2.09×10–16), downstream of the SHBG gene. No genome-wide significant associations were observed with estradiol or testosterone levels. Among variants that were suggestively associated with estradiol (P<10–5), several were located at the CYP19A1 gene locus. Overall results were similar in secondary meta-analyses that included ∼900 NHS current postmenopausal hormone users. No variant associated with estradiol, testosterone, or SHBG at P<10–5 was associated with postmenopausal breast cancer risk among CGEMS participants. Our results suggest that the small magnitude of difference in hormone levels associated with common genetic variants is likely insufficient to detectably contribute to breast cancer risk
    corecore