178 research outputs found

    Beta cell function in type 1 diabetes determined from clinical and fasting biochemical variables

    Get PDF
    AIMS/HYPOTHESIS: Beta cell function in type 1 diabetes is commonly assessed as the average plasma C-peptide concentration over 2 h following a mixed-meal test (CPAVE). Monitoring of disease progression and response to disease-modifying therapy would benefit from a simpler, more convenient and less costly measure. Therefore, we determined whether CPAVE could be reliably estimated from routine clinical variables. METHODS: Clinical and fasting biochemical data from eight randomised therapy trials involving participants with recently diagnosed type 1 diabetes were used to develop and validate linear models to estimate CPAVE and to test their accuracy in estimating loss of beta cell function and response to immune therapy. RESULTS: A model based on disease duration, BMI, insulin dose, HbA1c, fasting plasma C-peptide and fasting plasma glucose most accurately estimated loss of beta cell function (area under the receiver operating characteristic curve [AUROC] 0.89 [95% CI 0.87, 0.92]) and was superior to the commonly used insulin-dose-adjusted HbA1c (IDAA1c) measure (AUROC 0.72 [95% CI 0.68, 0.76]). Model-estimated CPAVE (CPEST) reliably identified treatment effects in randomised trials. CPEST, compared with CPAVE, required only a modest (up to 17%) increase in sample size for equivalent statistical power. CONCLUSIONS/INTERPRETATION: CPEST, approximated from six variables at a single time point, accurately identifies loss of beta cell function in type 1 diabetes and is comparable to CPAVE for identifying treatment effects. CPEST could serve as a convenient and economical measure of beta cell function in the clinic and as a primary outcome measure in trials of disease-modifying therapy in type 1 diabetes

    The Role of Practitioner Resilience and Mindfulness in Effective Practice: A Practice-Based Feasibility Study.

    Get PDF
    A growing body of literature attests to the existence of therapist effects with little explanation of this phenomenon. This study therefore investigated the role of resilience and mindfulness as factors related to practitioner wellbeing and associated effective practice. Data comprised practitioners (n = 37) and their patient outcome data (n = 4980) conducted within a stepped care model of service delivery. Analyses employed benchmarking and multilevel modeling to identify more and less effective practitioners via yoking of therapist factors and nested patient outcomes. A therapist effect of 6.7 % was identified based on patient depression (PHQ-9) outcome scores. More effective practitioners compared to less effective practitioners displayed significantly higher levels of mindfulness as well as resilience and mindfulness combined. Implications for policy, research and practice are discussed

    Molecular phylogenetics of the sucking louse genus Lemurpediculus (Insecta: Phthiraptera), ectoparasites of lemurs, with descriptions of three new species

    Get PDF
    Sucking lice live in intimate association with their hosts and often display a high degree of host specificity. The present study investigated sucking lice of the genus Lemurpediculus from six mouse lemur (Microcebus) and two dwarf lemur (Cheirogaleus) species endemic to the island of Madagascar, considered a biodiversity hotspot. Louse phylogenetic trees were created based on cytochrome C oxidase subunit I (COI), elongation factor 1α (EF1α) and internal transcribed spacer 1 (ITS1) sequences. While clustering according to host species was generally observed for COI and ITS1, suggesting high host specificity of the examined lice, EF1α sequences alone did not distinguish between lice of different Microcebus species, possibly due to rather recent divergence. As bootstrap support for basal tree structure was rather low, further data are necessary to resolve the evolutionary history of louse-mouse lemur associations. Three new species of sucking lice are described: Lemurpediculus zimmermanni sp. Nov. From Microcebus ravelobensis, Lemurpediculus gerpi sp. Nov. From Microcebus gerpi, and Lemurpediculus tsimanampesotsae sp. Nov. From Microcebus griseorufus. These new species are compared with all known congeneric species and identifying features are illustrated for all known species of Lemurpediculus

    Molecular phylogenetics of the sucking louse genus Lemurpediculus (Insecta: Phthiraptera), ectoparasites of lemurs, with descriptions of three new species

    Get PDF
    Sucking lice live in intimate association with their hosts and often display a high degree of host specificity. The present study investigated sucking lice of the genus Lemurpediculus from six mouse lemur (Microcebus) and two dwarf lemur (Cheirogaleus) species endemic to the island of Madagascar, considered a biodiversity hotspot. Louse phylogenetic trees were created based on cytochrome C oxidase subunit I (COI), elongation factor 1α (EF1α) and internal transcribed spacer 1 (ITS1) sequences. While clustering according to host species was generally observed for COI and ITS1, suggesting high host specificity of the examined lice, EF1α sequences alone did not distinguish between lice of different Microcebus species, possibly due to rather recent divergence. As bootstrap support for basal tree structure was rather low, further data are necessary to resolve the evolutionary history of louse-mouse lemur associations. Three new species of sucking lice are described: Lemurpediculus zimmermanni sp. Nov. From Microcebus ravelobensis, Lemurpediculus gerpi sp. Nov. From Microcebus gerpi, and Lemurpediculus tsimanampesotsae sp. Nov. From Microcebus griseorufus. These new species are compared with all known congeneric species and identifying features are illustrated for all known species of Lemurpediculus

    Targeting effector memory T cells with alefacept in new onset type 1 diabetes: 12 month results from the T1DAL study

    Get PDF
    Background Type 1 diabetes (T1D) results from autoimmune targeting of the pancreatic beta cells, likely mediated by effector memory T cells (Tems). CD2, a T cell surface protein highly expressed on Tems, is targeted by the fusion protein alefacept, depleting Tems and central memory T cells (Tcms). We hypothesized that alefacept would arrest autoimmunity and preserve residual beta cells in newly diagnosed T1D. Methods The T1DAL study is a phase II, double-blind, placebo-controlled trial that randomised T1D patients 12-35 years old within 100 days of diagnosis, 33 to alefacept (two 12-week courses of 15 mg IM per week, separated by a 12-week pause) and 16 to placebo, at 14 US sites. The primary endpoint was the change from baseline in mean 2-hour C-peptide area under the curve (AUC) at 12 months. This trial is registered with ClinicalTrials.gov, number NCT00965458. Findings The mean 2-hour C-peptide AUC at 12 months increased by 0.015 nmol/L (95% CI -0.080 to 0.110 nmol/L) in the alefacept group and decreased by 0.115 nmol/L (95% CI -0.278 to 0.047) in the placebo group, which was not significant (p=0.065). However, key secondary endpoints were met: the mean 4-hour C-peptide AUC was significantly higher (p=0.019), and daily insulin use and the rate of hypoglycemic events were significantly lower (p=0.02 and p<0.001, respectively) at 12 months in the alefacept vs. placebo groups. Safety and tolerability were comparable between groups. There was targeted depletion of Tems and Tcms, with sparing of naïve and regulatory T cells (Tregs). Interpretation At 12 months, alefacept preserved the 4-hour C-peptide AUC, lowered insulin use, and reduced hypoglycemic events, suggesting a signal of efficacy. Depletion of memory T cells with sparing of Tregs may be a useful strategy to preserve beta cell function in new-onset T1D
    • …
    corecore