91 research outputs found

    Large scale circulation patterns associated to seasonal dry and wet conditions over the Czech Republic

    Get PDF
    Ponencia presentada en: VIII Congreso de la Asociación Española de Climatología celebrado en Salamanca entre el 25 y el 28 de septiembre de 2012.[ES]Este trabajo analiza la relación entre las condiciones estaciónales extremadamente secas y húmedas en la República Checa y los patrones de circulación de gran escala. El índice estandarizado de precipitación y evapotranspiración (SPEI) se utiliza para cuantificar las condiciones de humedad. El SPEI fue calculado a partir de los registros mensuales de temperatura media y precipitación total de una densa red de 184 estaciones climatológicas para el período 1961-2010 en la escala temporal de un mes.[EN]This paper analyzes the link between the extremely dry and wet conditions over the Czech Republic and the large scale circulation patterns, at seasonal scale. The Standardized Precipitation Evapotranspiration Index (SPEI) is used to quantify the moisture conditions. The SPEI for one month lag was calculated from monthly records of mean air temperature and precipitation totals using a dense network of 184 climatological stations for the period 1961-2010.The research on drought conditions in the Czech Republic was supported by S grant of MSMT CR and projects 6046070901 and OC10010

    Abrupt climate and weather changes across time scales

    Get PDF
    The past provides evidence of abrupt climate shifts and changes in the frequency of climate and weather extremes. We explore the non‐linear response to orbital forcing and then consider climate millennial variability down to daily weather events. Orbital changes are translated into regional responses in temperature, where the precessional response is related to nonlinearities and seasonal biases in the system. We question regularities found in climate events by analyzing the distribution of inter‐event waiting times. Periodicities of about 900 and 1150 years are found in ice cores besides the prominent 1500‐years cycle. However, the variability remains indistinguishable from a random process, suggesting that centennial‐to‐millennial variability is stochastic in nature. New numerical techniques are developed allowing for a high resolution in the dynamically relevant regions like coasts, major upwelling regions, and high latitudes. Using this model, we find a strong sensitivity of the Atlantic meridional overturning circulation depending on where the deglacial meltwater is injected into. Meltwater into the Mississippi and near Labrador hardly affect the large‐scale ocean circulation, whereas subpolar hosing mimicking icebergs yields a quasi shutdown. The same multi‐scale approach is applied to radiocarbon simulations enabling a dynamical interpretation of marine sediment cores. Finally, abrupt climate events also have counterparts in the recent climate records, revealing a close link between climate variability, the statistics of North Atlantic weather patterns, and extreme events

    Do multicomponent workplace health and wellbeing programs predict changes in health and wellbeing?

    Get PDF
    Organizations typically deploy multiple health and wellbeing practices in an overall program. We explore whether practices in workplace health and wellbeing programs cohere around a small number of archetypal categories or whether differences between organizations are better ex-plained by a continuum. We also examine whether adopting multiple practices predicts subse-quent changes in health and wellbeing. Using survey data from 146 organizations, we found differences between organizations were best characterized by a continuum ranging from less to more extensive adoption of practices. Using two-wave multilevel survey data at both individual and organizational level (N = 6,968 individuals, N = 58 organizations), we found that in organi-zations that adopt a wider range of health and wellbeing practices, workers with poor baseline psychological wellbeing were more likely to report subsequent improvements in wellbeing and workers that reported good physical health at baseline were less likely to report experiencing poor health at follow-up. We found no evidence that adopting multiple health and wellbeing practices buffered the impact of individuals’ workplace psychosocial hazards on physical health or psy-chological wellbeing

    Middle Miocene Climate and Stable Oxygen Isotopes in Europe Based on Numerical Modeling

    Get PDF
    The Middle Miocene (15.99–11.65 Ma) of Europe witnessed major climatic, environmental, and vegetational change, yet we are lacking detailed reconstructions of Middle Miocene temperature and precipitation patterns over Europe. Here, we use a high-resolution (∼0.75°) isotope-enabled general circulation model (ECHAM5-wiso) with time-specific boundary conditions to investigate changes in temperature, precipitation, and δ18O in precipitation (δ18Op). Experiments were designed with variable elevation configurations of the European Alps and different atmospheric CO2 levels to examine the influence of Alpine elevation and global climate forcing on regional climate and δ18Op patterns. Modeling results are in agreement with available paleobotanical temperature data and with low-resolution Middle Miocene experiments of the Miocene Model Intercomparison Project (MioMIP1). However, simulated precipitation rates are 300–500 mm/yr lower in the Middle Miocene than for pre-industrial times for central Europe. This result is consistent with precipitation estimates from herpetological fossil assemblages, but contradicts precipitation estimates from paleobotanical data. We attribute the Middle Miocene precipitation change in Europe to shifts in large-scale pressure patterns in the North Atlantic and over Europe and associated changes in wind direction and humidity. We suggest that global climate forcing contributed to a maximum δ18Op change of ∼2‰ over high elevation (Alps) and ∼1‰ over low elevation regions. In contrast, we observe a maximum modeled δ18Op decrease of 8‰ across the Alpine orogen due to Alpine topography. However, the elevation-δ18Op lapse rate shallows in the Middle Miocene, leading to a possible underestimation of paleotopography when using present-day δ18Op—elevation relationships data for stable isotope paleoaltimetry studies

    Block and gradient copoly(2-oxazoline) micelles : strikingly different on the inside

    Get PDF
    Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water ethanol mixtures by small-angle X-ray scattering (SAXS), small angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and H-1 NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure

    Estimating the global economic benefits of physically active populations over 30 years (2020 to 2050)

    Get PDF
    OBJECTIVES: We assess the potential benefits of increased physical activity on the global economy for 23 countries and the rest of the world over a 30-year time horizon (from 2020 to 2050). The main factors taken into account in the economic assessment are excess mortality and lower productivity. METHODS: This study links three methodologies. First, we estimate the association between physical inactivity and workplace productivity using multivariable regression models with proprietary data on 120,143 individuals in the UK and six Asian countries (Australia, Malaysia, Hong Kong, Thailand, Singapore and Sri Lanka). Second, we analyse the association between physical activity and mortality risk through a meta-regression analysis with data from 74 prior studies with global coverage. Finally, the estimated effects are combined in a computable general equilibrium (CGE) macroeconomic model to project the economic benefits of physical inactivity over time. RESULTS: Doing at least 150 minutes of moderate-intensity physical activity, as per lower limit of the range recommended by the 2020 World Health Organisation guidelines, would lead to an increase in global GDP of 0.16%-0.23% per year by 2050, worth up to US 314314-446 billion per year and 6.06.0-8.6 trillion cumulatively over the 30-year projection horizon (in 2019 prices). The results vary by country due to differences in baseline levels of physical activity and GDP per capita. CONCLUSIONS: Increasing physical activity in the population would lead to reduction in working-age mortality and morbidity and an increase in productivity, particularly through lower presenteeism, leading to substantial economic gains for the global economy

    Comparison of proteomic responses as global approach to antibiotic mechanism of action elucidation

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology
    corecore