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ABSTRACT New antibiotics are urgently needed to address the mounting resis-
tance challenge. In early drug discovery, one of the bottlenecks is the elucidation of
targets and mechanisms. To accelerate antibiotic research, we provide a proteomic
approach for the rapid classification of compounds into those with precedented and
unprecedented modes of action. We established a proteomic response library of Ba-
cillus subtilis covering 91 antibiotics and comparator compounds, and a mathemati-
cal approach was developed to aid data analysis. Comparison of proteomic re-
sponses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of
action as shown for atypical tetracyclines. It also aids in generating hypotheses on
mechanisms of action as presented for salvarsan (arsphenamine) and the antirheu-
matic agent auranofin, which is under consideration for repurposing. Proteomic pro-
filing also provides insights into the impact of antibiotics on bacterial physiology
through analysis of marker proteins indicative of the impairment of cellular pro-
cesses and structures. As demonstrated for trans-translation, a promising target not
yet exploited clinically, proteomic profiling supports chemical biology approaches to
investigating bacterial physiology.

KEYWORDS antibiotic, chemical biology, mechanism of action, physiology,
proteomics

Antibiotics are essential medicines that reduce the mortality as well as the economic
and societal impacts of bacterial infections. In 1910, the first antibiotic introduced

to the market was salvarsan (arsphenamine) for the treatment of syphilis. To this day,
its mechanism of action has not been investigated. The use of salvarsan was discon-
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tinued due to toxicity when safer drugs like cell wall biosynthesis (CWB)-inhibiting
�-lactams or protein biosynthesis-blocking tetracyclines became available. Numerous
antibiotic classes were discovered during the “golden age of antibiotic discovery” (1940
to 1960). The most successful classes were brought to market and subsequently refined
over several generations to reduce side effects, broaden the spectrum of activity, and
overcome resistance. Antibiotic approvals peaked in the 1980s but declined since. In
decades, no structurally new antibiotic class was discovered that entered the market
(1). Today, multidrug-resistant bacteria like methicillin-resistant Staphylococcus aureus
(MRSA) and Pseudomonas aeruginosa pose enormous challenges (2). With resistance
spreading, infectious diseases returned as one of the leading causes of death world-
wide, and it is estimated that by 2050, 10 million people will die annually due to
antimicrobial resistance (3).

While antibiotic releases are still at a low, the investigation of bioactive molecules of
natural and synthetic origins is experiencing a renaissance. Promising recently de-
scribed compounds include teixobactin, a cyclic depsipeptide produced by Eleftheria
terrae that inhibits cell wall biosynthesis (4), and murgocil, a synthetic inhibitor of cell
wall biosynthesis that synergizes with �-lactams against MRSA (5). To find novel
antibiotics, extensive compound libraries are screened for antibacterial activity (whole-
cell activity screening) or for inhibition of a particular protein target or cellular process
(target-based screening). Characterizing these initial hits is a bottleneck in antibiotic
research, as it is laborious and resource-intensive. Therefore, it is important to identify
promising lead structures early on, to focus resources. One of the impediments in
characterizing hits from whole-cell activity screens (as opposed to target-based screens)
is the time-consuming elucidation of the antibacterial target and mechanism of action.
This is usually approached by identifying affected pathways by means of precursor
incorporation (6), reporter gene assays (7), identifying targets based on mapping
mutations in spontaneous resistant mutants (8), or investigating the effects of treat-
ment of bacteria on a system scale by transcriptome or proteome analysis (6, 9, 10).
Systems-based approaches are particularly useful to investigate the effects of com-
pounds with novel molecular targets (stemming from either screening approach) on
bacterial physiology as a whole, as was first shown by VanBogelen and Neidhardt (11).

Here, we provide a major update of the Bacillus subtilis proteomic response library,
which had its origins in the late 1990s when large pharmaceutical companies investi-
gated natural products as potential new antibacterial agents. It was shown that the
acute proteomic response reflects the physiological impact of an antibiotic as well as
cellular strategies to control and overcome the physiological challenge. Since com-
pounds with a similar impact on physiology elicit similar responses, the proteomic
profiles were used to identify inhibition of the peptidyl transferase reaction as the
mechanism of action of the natural product Bay 50-2369 based on the similarities to
chloramphenicol and tetracycline (10). Proteome analyses also aided in elucidating the
mechanism of action of the natural product acyldepsipeptide, which targets ClpP (12).
When industry largely moved to target-based antibiotic discovery, the library was
expanded to include agents that inhibit experimental target areas such as fatty acid
biosynthesis (FAB) (13) or, inspired by the clinical success of daptomycin, the bacterial
membrane. In fact, proteome analysis contributed to a better understanding of the
mechanism of action of daptomycin itself (14). The mounting antibiotic resistance
challenge increases the urgency to find new antibacterial agents with novel targets and
mechanisms of action. Recent, largely academic efforts led to the emergence of
compounds that need mechanism-of-action analysis and innovative drug discovery
projects that require a better understanding of the physiological impact of inhibiting a
novel target. Recognizing this demand, we offer an approach we termed comparison of
proteomic responses (CoPR) in support of antibiotic research.

To propel future mechanism-of-action studies and obtain insights into the physiol-
ogy of antibiotic action, we gathered 55 of our previously reported proteomic profiles
of Bacillus subtilis 168 and investigated 36 further proteomic responses. This adds up to
a library of response profiles for 91 antibacterial agents and comparator compounds
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(see Data Set S1, Tables S1 to S71, and Fig. S1 to S35 in the supplemental material). The
library covers clinically relevant and experimental drugs like the topoisomerase inhib-
itors ciprofloxacin and nalidixic acid, the aminoacyl-tRNA synthesis inhibitors mupirocin
and AN3334 (15), the RNA polymerase inhibitor rifampicin, and the fatty acid biosyn-
thesis inhibitors platensimycin (13) and platencin (16) and substances used in research,
like the ionophores calcimycin and ionomycin, which disturb ion homeostasis (17). Our
data have been made publicly available on the SubtiWiki platform (18) (http://subtiwiki
.uni-goettingen.de/v4/downloads) and in the supplemental material (Data Set S1,
Tables S1 to S71, and Fig. S1 to S35).

To aid the analysis of new compounds, we introduce an approach that we termed
CoPR that combines two-dimensional PAGE (2D-PAGE) with a mathematical compari-
son of the response profiles. A step-by-step protocol on how to use CoPR is available
in the supplemental material. CoPR allows the deduction of target areas for cytoplas-
mic, nonprotein, and extracytoplasmic targets. Marker proteins indicative of the im-
pairment of a specific cellular process or structure were delineated. As examples, we
investigated the mechanisms of atypical tetracyclines (which can have dual mecha-
nisms), salvarsan, auranofin, an antirheumatic drug considered for repurposing, and
trans-translation inhibitors targeting a process not yet clinically exploited (19).

RESULTS
Construction of the B. subtilis proteomic response library. To build the pro-

teomic response library, we chose the Gram-positive model organism B. subtilis 168,
which is susceptible to most antibiotics, limiting constraints due to resistance, com-
pound uptake, or efflux, which can impede this type of analysis for pathogens, in
particular multiresistant pathogens. The proteome of B. subtilis has been investigated in
depth (20), and an extensive knowledgebase exists on its regulatory circuits and protein
functions, which provides an optimal basis for a thorough interpretation of proteomic
responses. While it is not possible to directly transfer knowledge of the specific proteins
upregulated in response to an antibiotic challenge from B. subtilis to pathogens, the
inferred target area is not species specific, and hypotheses on target proteins can be
tested in model organisms or pathogens.

The goal of the proteome analysis is to capture the acute antibiotic impact and
bacterial response to antibiotic treatment. From a technical perspective, the construc-
tion of the proteomic response library can be divided into three steps: sample gener-
ation (Fig. 1a), data generation (Fig. 1b), and data evaluation (Fig. 1c). To generate
samples, exponentially growing cultures were treated with antibacterial agents in early
to mid-log phase using “physiologically effective concentrations” (PECs) that inhibit the
growth of the cultures by 50 to 80%. These concentrations were identified individually
for each agent in growth experiments. Proteins produced during a 5-min pulse, starting
10 min after compound addition, were labeled with [35S]methionine, and the cells were
harvested. Based on total protein quantitation and scintillation counting, global relative
protein synthesis (PS) rates after antibiotic treatment were calculated in relation to
untreated controls. Proteins were separated by 2D-PAGE, and relative synthesis rates
were determined for individual protein spots based on the autoradiographs. To be
designated “marker proteins,” the relative synthesis rates had to be at least 2 in each
biological replicate. The exquisite sensitivity of pulse-labeling allows the monitoring of
changes in the allocation of the cellular translation capacity, revealing adaptations of
the proteome, which in gel-free mass spectrometry (MS)-based proteomic approaches
remain hidden in a background of accumulated proteins (21). Working with the
growing library of proteomic profiles required the development of a data evaluation
concept (Fig. 1c). The mathematical approach to the comparison of proteomic re-
sponses (CoPR) is based on a matrix of pairwise comparisons of the similarity between
two antibiotic responses. For each pairwise comparison, a cosine similarity score (CoPR
score) was generated based on the regulation factors (RFs) of the marker proteins. The
scores range from 1 (perfect similarity) to 0 (perfect dissimilarity), which allows the rapid
identification of similar proteomic responses. Proteomic responses can be further
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interpreted individually based on the marker proteins, protein modifications, and
knowledge on protein regulation and function. This is typically necessary to generate
hypotheses on potential new molecular targets or to understand the physiological
consequences of antibacterial action.

The proteomic response library. The library of proteomic responses covers clini-
cally used antibiotics, experimental antibiotics, comparator compounds, and toxic
substances. For some of the compounds, molecular targets and mechanisms have been
described, while others have not been characterized yet (Fig. 2 and 3 and Table 1; see
also Data Set S1 in the supplemental material). On average, the proteomic responses of
B. subtilis comprise 20 different marker proteins, with the number of induced proteins
ranging from 0 to 56. Overall, 486 different proteins were identified as marker proteins
under at least one condition, 130 of which are proteins of unknown function.

The CoPR-based similarity analysis facilitated the mechanism-of-action-dependent
sorting of 86 response profiles. The dendrogram built based on the CoPR scores
separates into two main branches: compounds that mostly affect cytoplasmic compo-
nents or processes (Fig. 2) and compounds with extracytoplasmic targets (Fig. 3). As
discussed by VanBogelen and Neidhardt (11), proteins can be used as proteomic
signatures to diagnose physiological states. In the context of antibiotics, they can
specifically indicate which processes or structures are disturbed. The recurring marker
proteins shown alongside the dendrogram (Fig. 2 and 3) allow the rapid matching of
new compounds with target areas that are covered by compounds in the library. The
homogeneity of proteomic responses varies for different cellular structures and path-
ways targeted (Fig. 4). Most compounds that impact the structural integrity of the
cytoplasmic membrane, for instance, elicit the upregulation of certain marker proteins,
most prominently LiaH, which is upregulated in response to 100% of these agents. The
less well-defined target area of “redox and metal homeostasis and nucleic acid metab-
olism” is represented by more diverse responses with various combinations of marker
proteins. The most consistent marker for this target area is YvyD, with approximately
50% representation.

Of all target areas, fatty acid biosynthesis inhibitors, which group into the first
branch of the dendrogram, gave the most homogeneous response (Fig. 2 and 4).
Irrespective of the protein target, the tested inhibitors (FabF inhibitors cerulenin and
platensimycin, FabI inhibitor triclosan, and FabF, FabHA, and FabHB inhibitor platencin)

FIG 1 Construction of the Bacillus subtilis proteomic response library. (a) Sample generation. Newly synthesized
proteins of B. subtilis are pulse-labeled for 5 min with L-[35S]methionine 10 min after the addition of an antibiotic
at a concentration that leads to 50 to 80% growth inhibition. Subsequently, the incorporation of 35S into protein
of control and antibiotic-treated samples is determined by scintillation counting to calculate relative protein
synthesis rates. (b) Data generation. Autoradiographs of 2D gels are used for software-based image analysis to
identify marker proteins (regulation factor of �2 in each of the biological replicates). Marker proteins are excised
from nonradioactive gels and identified by mass spectrometry. MW, molecular weight; pI, isoelectric point. (c) Data
evaluation. Identified marker proteins and regulation factors are added to the CoPR library to calculate a similarity
matrix. The similarity of a proteomic profile to responses in the library is utilized, in conjunction with knowledge
on the proteins (function, localization, and regulation, etc.) from the SubtiWiki database and the literature, to
generate a hypothesis on the mechanism of action of compounds.
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resulted in the upregulation of FabHA, FabHB, FabF, and FabI (13). The induction of the
fatty acid biosynthesis pathway is a direct countermeasure to the impairment of the
pathway by the inhibitors.

Two neighboring branches comprise antibiotics that interfere with protein biosyn-
thesis but affect physiology differently (Fig. 2). Antibiotics like tetracycline, erythromy-
cin, or chloramphenicol interfere with chain elongation, thereby inhibiting protein
biosynthesis. They share ribosomal proteins like RpsB, RpsF, or RplJ or elongation factor
Tu (TufA) as markers. The upregulation of ribosomal proteins and TufA counteracts the
reduction in protein synthesis rates. A different response is observed for agents that
compromise translation fidelity and protein quality. Puromycin, which leads to the
premature termination of translation; aminoglycosides, which interfere with ribosomal

FIG 2 Similarity of proteomic responses to antibiotics affecting cytoplasmic targets and processes. B. subtilis was treated for 10 min with physiologically effective
concentrations (PEC) of the agents prior to radioactive labeling of newly synthesized proteins and 2D-PAGE-based proteomic profiling. To generate the
dendrogram, Ward’s method was applied to the CoPR scores (68). Abbreviations: AATS, aminoacyl-tRNA supply; IH, ion homeostasis; OS, oxidative stress; PQ,
protein quality. Colors underlying the dendrogram indicate groups of antibiotics with similar antibiotic effects and responses: purple, inhibition of fatty acid
biosynthesis (FAB); dark blue, inhibition of protein synthesis (PS); light blue, effects on PS resulting in proteotoxic stress; red, effects on redox homeostasis, metal
homeostasis, and nucleic acids. Squares indicate marker proteins informative of cellular structures or processes according to the following color code: purple,
FAB; dark blue, PS; light blue, proteotoxic stress; dark red, sulfur metabolism; red, detoxification of ROS; orange, prevention of oxidative damage; yellow, general
stress; dark green, membrane (structural integrity); medium green, membrane (associated functions); gray, regulation of sporulation and cell division. References
indicate the sources of proteomic data (7, 10, 12, 13, 17, 21, 34, 66, 69, 70). #, proteomic response recorded in this work; *, proteome response recorded on
a different gel system.
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decoding and proofreading; and acyldepsipeptide, which causes uncontrolled prote-
olysis by ClpP (12), elicit the upregulation of the chaperone systems GroEL/GroES and
DnaK/DnaJ as well as the proteases ClpC and ClpE. These proteins prevent the aggre-
gation of misfolded proteins, facilitate refolding, or aid in the degradation of dysfunc-
tional proteins.

FIG 3 Similarity of proteomic responses to antibiotics affecting extracytoplasmic targets. B. subtilis was treated for 10 min with physiologically effective
concentrations (PEC) of the antibacterial agents prior to radioactive labeling of newly synthesized proteins and 2D-PAGE-based proteomic profiling. To generate
the dendrogram, Ward’s method was applied to the CoPR scores (68). IH, ion homeostasis. Colors underlying the dendrogram indicate groups of antibiotics
with similar antibiotic effects and responses: light green, inhibition of cell wall biosynthesis (CWB) by interference with bactoprenol recycling; dark green,
interference with membrane structure; medium green, interference with membrane structure and membrane-associated processes. Squares indicate marker
proteins informative of cellular structures or processes according to the following color code: dark blue, protein synthesis (PS); light blue, proteotoxic stress;
dark red, sulfur metabolism; red, detoxification of ROS; orange, prevention of oxidative damage; yellow, general stress; dark green, membrane (structural
integrity); medium green, membrane (associated functions); light green, inhibition of CWB by interference with bactoprenol recycling; gray, regulation of
sporulation and cell division. References indicate the sources of proteomic data (10, 14, 24–28, 34, 71, 72). #, proteomic response recorded in this work; *,
proteome response recorded on a different gel system.

TABLE 1 Antibiotics not amenable to CoPR analysis

Compound Compound class Process(es) and/or target structure Description Reference

Methicillin Penicillin Cell wall biosynthesis No protein met the 2-fold upregulation
requirement of marker proteins

10

Cephalexin Cephalosporin Cell wall biosynthesis, cell division No protein met the 2-fold upregulation
requirement of marker proteins

This work

PC190723 Benzamide Cell division No protein met the 2-fold upregulation
requirement of marker proteins

This work

Rotenone Isoflavone Respiratory chain B. subtilis 168 is resistant to rotenone, and no proteins
met the 2-fold upregulation requirement

This work

Actinonin Nonribosomal peptide Protein synthesis, peptide deformylase pI shift of protein spots after actinonin treatment prevents
quantitative comparison of the proteomic profile
to the control

32
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Another branch harbors compounds that elicit oxidative stress responses, interfere
with metal homeostasis, and/or cause nucleic acid stress (Fig. 2). Some of the agents,
like nitrofurantoin and salvarsan, calcimycin and ionomycin, or nalidixic acid and
rifampicin, elicit the upregulation of enzymes that detoxify reactive oxygen species
(ROS), including the superoxide dismutases SodA and SodF, the catalase KatA, and/or
the alkyl hydroperoxide reductase AhpC/AhpF. Especially for comparator compounds
but also for the clinically used antibiotic nitrofurantoin, the upregulation of ROS-
detoxifying proteins can occur together with the upregulation of chaperones and
proteases, indicating that protein homeostasis is critically impaired. Some of the agents,
like nitrofurantoin, calcimycin, novobiocin, mupirocin, and trimethoprim, elicit the
upregulation of marker proteins involved in the protection of the cell from oxidative
damage. Examples are MrgA and Dps, which mainly protect DNA, and/or OhrA/OhrB,
the thioredoxin system (TrxA/TrxB), and BrxA/BrxB, which protect proteins. It was
discussed previously that all antibiotics or all bactericidal antibiotics cause oxidative
stress, which then leads to cell death (22, 23). Although upregulation of oxidative
stress-related marker proteins occurs in response to many compounds in this branch as
well as the branch covering extracytoplasmic functions, the library shows that, at least
during the acute proteomic response with sublethal doses of antibiotics, this is not the
case for all antibiotics or all bactericidal antibiotics. No ROS-responsive proteins were
upregulated in response to most fatty acid biosynthesis inhibitors, protein biosynthesis
inhibitors, or cell wall biosynthesis inhibitors, including bactericidal aminoglycosides,
vancomycin, and methicillin.

The second main branch of the dendrogram contains compounds acting on the cell
envelope and its functions (Fig. 3). The most prominent marker proteins for this branch
are LiaH, PspA, and YceC/H. The paralogous proteins LiaH and PspA stabilize the
membrane from the inside. PspA is upregulated in response to a loss of membrane
integrity, and LiaH is upregulated in response to inhibition of membrane-based steps
of cell wall biosynthesis. YceC and YceH are proteins of unknown function that were
previously described as markers for cell envelope stress (24, 25). Other marker proteins
that are frequently observed include RacX, NadE, and YoxD (26, 27). The amino acid
racemase RacX is involved in cell envelope modification. The NAD� synthase NadE has
been described as a marker protein for membrane stress and indicates impairment of
membrane-associated processes related to energy metabolism (27), and YoxD, a pro-
tein of unknown function, could be involved in the synthesis of alternative lipids,
reorganizing the membrane to make it less susceptible to antimicrobial peptides (25,
27, 28).

The “extracytoplasmic” branch splits into three branches (Fig. 3). Compounds in the
first branch are vancomycin, bacitracin, and lantibiotics (NAI-107, gallidermin, mersaci-
din, and nisin), all of which interfere with the function of lipid II and/or the bactoprenol
cycle. They share YtrB and YtrE as additional markers. Both proteins are cytoplasmic
components of a postulated ABC transporter known to be upregulated in early sta-

FIG 4 The most common marker proteins for each target area. For each branch of the dendrogram, the relative prevalence of the seven most frequently
observed marker proteins is shown. The color code is indicated at the top.
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tionary phase (29). Based on the proteome data, we speculated that the ABC trans-
porter has a function related to the bactoprenol cycle. Indeed, in support of this
hypothesis, we found that a mutant that constitutively expresses the ytrGABCDEF
operon is resistant to the acute effects of nisin (Fig. S36). The second branch includes
compounds that interfere with membrane integrity but do not invoke sporulation-
related marker proteins. Compounds in the third branch also target the membrane but
share the sporulation- and cell division-associated marker Spo0M and the sporulation-
associated transcriptional regulator SpoVG.

Not all antibiotics elicit an upregulation of marker proteins in B. subtilis. Neither the
inhibition of late steps of cell wall biosynthesis nor the inhibition of cell division
resulted in changes of the cytosolic proteome (Table 1). Accordingly, no marker
proteins were observed for inhibition of the transpeptidase reaction by methicillin (10)
or for inhibition of the cell division protein FtsZ or FtsI by PC190723 (30) and cepha-
lexin, respectively. Also, no marker proteins were observed for rotenone, an electron
transport chain inhibitor to which B. subtilis is intrinsically resistant (31) (Fig. S35). On
the other end of the spectrum, some compounds have such a profound impact on the
proteome that an interpretation of the 2D-PAGE-based proteomic response based on
the CoPR approach is obstructed. When peptide deformylases (YkrB and Def) are
inhibited by actinonin or downregulated in a conditional mutant, global interference
with the cotranslational processing of protein N termini leads to a pI shift in most newly
synthesized proteins (32). Using the approach described here, it is not possible to
unambiguously match pI-shifted protein spots with spots under control conditions on
autoradiographs of the 2D gels. While proteins could still be identified using mass
spectrometry, the calculation of 2D-PAGE-based regulation factors is impaired. How-
ever, the pI shifts are a direct consequence of the antibiotic action and can thus be used
as a proteomic signature that provides insights into the mechanism of action.

The CoPR similarity matrix provides insights into dual mechanisms of action.
The CoPR approach allows the rapid detection of compounds with potential dual
mechanisms of action since they elicit proteomic responses that show similarity to the
profiles of compounds with two different target areas. Such compounds are strong
candidates for clinical use because they might slow resistance development or lead to
an overall bactericidal effect (33). In a recent proteome-based study, we showed that
the atypical tetracycline chelocardin has a dual mechanism of action with a
concentration-dependent differential impact on physiology (34). Taking chelocardin as
an example, the CoPR matrix reflects the concentration-dependent similarity with
protein synthesis inhibitors as well as compounds in the extracytoplasmic branch (Fig.
5a). At the physiologically effective concentration, chelocardin shares key marker
proteins with both, as depicted exemplarily for tetracycline, daptomycin, and gramici-
din S (Fig. 5b and c). The same is true for the atypical tetracycline anhydrotetracycline
(Fig. 5d): it also shares marker proteins at the physiologically effective concentration
with protein synthesis inhibitors and with compounds affecting the cytoplasmic mem-
brane. Interestingly, the proteomic response to 2-carboxamido-2-deacetyl-chelocardin
(amidochelocardin), a recently described derivative of chelocardin that is active against
multidrug-resistant pathogens (35), does not show indications of a dual mechanism
(Fig. 5e). No marker proteins characteristic of protein synthesis inhibition were upregu-
lated in response to amidochelocardin, even at low concentrations. In congruence with
the proteomic response, the protein synthesis rates dropped to 50% at 12 �g/ml
chelocardin (34), as measured by the incorporation of [35S]methionine, but were
unaffected by amidochelocardin even at concentrations of up to 20 �g/ml.

Metals and metalloids: opportunities for extending the elemental building set
for antibiotics. One approach to quickly introducing new antibiotics is to repurpose
medicines approved for other indications. A promising candidate for drug repurposing
is auranofin, a late-stage antirheumatic drug. Auranofin, a gold-based organometallic,
has been shown to inhibit antibiotic-resistant pathogenic Gram-positive bacteria like
MRSA (36). It is an inhibitor of thioredoxin (37) and is thought to exert its antirheumatic
effects through interactions with cysteines in transcription factors like AP-1 or NF-�B.
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While auranofin’s antibacterial mechanism is not fully elucidated, thioredoxin is indeed
an essential protein in B. subtilis (38).

Another compound that contains an element rarely used in medicines is the
arsenic-based organometalloid salvarsan. While its mechanism has not been proven
experimentally, it is believed to be based on the reaction of arsenic with thiols.
Salvarsan’s use for the treatment of syphilis was discontinued when safer antibiotics
became available. However, with resistance of Treponema pallidum to second-line
macrolide antibiotics on the rise and penicillin resistance impending (39), salvarsan
might be worth revisiting as an antibiotic or an inspiration for the design of new drugs.

We investigated the mechanisms of action of auranofin and salvarsan by proteomic
profiling using the arsenic salts As2O3 and As2O5 as comparator compounds. The CoPR
similarity matrix revealed that the responses to auranofin, salvarsan, and As2O3 were
similar (Fig. 6a). The CoPR scores also reveal a high similarity to nitrofurantoin, an oral
antibiotic used to treat lower urinary tract infections, the mechanism of which is not
fully elucidated. Among the marker proteins of auranofin and salvarsan was the
arsenate reductase ArsC (Fig. 6b), which aids in the detoxification of arsenate. Both
salvarsan and auranofin elicit a number of marker proteins that are involved in
protecting the cell from oxidative protein damage (KatA, SodA, MrgA, chaperones, and
PepF) or replenishing the cysteine pool (MccB, CysC, CysK, YrhB, YxeK, and YxeP) (Fig.
6b). These marker proteins and the high similarity to the diamide and allicin proteomic
responses (both compounds are known to react with cysteines [40, 41]) corroborate
that the mechanisms of action of auranofin and salvarsan likely involve direct or
indirect thiol targeting.

FIG 5 Concentration-dependent shifts in the mechanism of action of atypical tetracyclines. (a) Similarity of the proteomic responses of B. subtilis to different
concentrations of tetracyclines and reference antibiotics. High similarity is indicated by a score close to 1 and a high intensity of blue color. Profiles originating
from treatment with physiologically effective concentrations (PEC) are indicated in boldface type. (b) Upregulation of marker proteins in response to reference
antibiotics. (c to e) Induction of marker proteins by different concentrations of chelocardin (c), anhydrotetracycline (d), and amidochelocardin (e). For panels
b to e, the scale represents the log10 of the marker protein regulation factor. For panels c to e, the black lines correspond to treatment with the PEC. For
proteomic responses to amidochelocardin and anhydrotetracycline, see Fig. S4 and S5 in the supplemental material. Proteomic profiles for tetracycline and
chelocardin were taken from a study by Stepanek et al. (34), and profiles for daptomycin and gramicidin S were taken from studies by Müller et al. (14) and
Wenzel et al. (28). All sections reflect averages from three biological replicates.
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Proteomic profiling of trans-translation inhibitors. Compound classes that ex-
ploit novel target areas are highly sought after to combat resistant pathogens. One
promising novel target area is ribosome rescue, a process required to release ribosomes
from stalled translation complexes. In bacteria, the most important ribosome rescue
process is trans-translation, which not only releases the ribosome but also targets the
defective mRNA and the incomplete nascent peptide for degradation (42). In some
bacteria, including Escherichia coli and B. subtilis, alternative factors have been found
that can release ribosomes but do not eliminate the mRNA or nascent peptide (43–45).
For E. coli, a conservative estimate is that 2 to 4% of translation reactions require
trans-translation to release ribosomes (46). Stalled ribosomes can quickly lead to the
depletion of actively translating ribosomes by trapping other ribosomes in polysomes.
We investigated the trans-translation inhibitors KKL-35 and KKL-40 (oxadiazoles), de-
rivatives of which have been shown to cross-link to the 23S rRNA (47), and KKL-55 (48)
(tetrazole), which likely has a different molecular target.

Decreased protein synthesis rates were observed after treatment with the oxadia-
zoles (KKL-35, 36%; KKL-44, 33%) but not to the same extent for the tetrazole (KKL-55,
83%). According to the CoPR similarity matrix, the proteomic profiles show low to no
similarity to the profiles of either of the two groups of protein biosynthesis inhibitors,
represented by tetracycline (inhibition of the elongation phase of translation) or
kanamycin (causing proteotoxic stress). Instead, the inhibitors of trans-translation evoke
a response similar to those of ionophores that disturb metal homeostasis (calcimycin)
and other agents causing oxidative stress responses (4-nitroquinoline oxide and allicin)
(Fig. 7a). Several marker proteins of trans-translation inhibitors are indicative of oxida-
tive stress and iron limitation (Fig. 7b), responses that are coregulated by PerR and Fur
in B. subtilis (reviewed by Moore and Helmann [49]). As bacteria often upregulate
compensatory measures, we hypothesize that trans-translation is of particular impor-
tance under oxidative stress, a condition shown to lead to elevated levels of defective
mRNAs (reviewed by Wurtmann and Wolin [50]).

DISCUSSION

To support antibiotic research, we offer a system-based “comparison of proteomic
responses” (CoPR) approach that provides insights into the impact of antibiotics on
bacterial physiology and the bacterial strategies to cope with antibiotics. The CoPR
library currently comprising responses of B. subtilis to 86 compounds as well as a
step-by-step guide for comparative analysis are publicly accessible (http://subtiwiki.uni
-goettingen.de/v4/downloads) (see Tables S1 to S71, Fig. S1 to S35, and Data Set S1 in
the supplemental material).

The CoPR approach replaces labor-intensive one-on-one comparisons with an ex-
pedient and reliable process that identifies the most closely matching responses. The

FIG 6 Comparing proteomic responses of B. subtilis 168 to auranofin and salvarsan. (a) Similarity of the proteomic responses of B. subtilis
against salvarsan, auranofin, arsenic salts, and reference antibiotics. High similarity is indicated by a score close to 1 and a high intensity
of blue color. (b) Comparison of marker proteins of salvarsan and auranofin. Shown are the marker proteins with the highest regulation
factors for both compounds. Averages from three biological replicates with standard deviations are given for the marker proteins of each
antibiotic (regulation factors of �2 in all replicates).
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analysis of the response to tetracycline is a demonstration of the robustness of the
method across laboratories and long time frames: the response to tetracycline was
analyzed twice using two different protocols and different equipment as described in
Materials and Methods and previous studies (10, 34) almost 15 years apart. Both
response profiles group into the same target area in the dendrogram (Fig. 2). Much like
the microscopy-based mechanism-of-action investigation introduced by Nonejuie et al.
(51), CoPR provides a means of grouping compounds by target area and mechanism
(Fig. 2 and 3) without directly disclosing molecular targets or mechanisms of action. In
addition, the proteome profiles provide complementary information by providing
detailed insights into the effects of antibiotics and bacterial stress responses on the
system level.

As demonstrated for the atypical tetracyclines, compounds with dual mechanisms
can be rapidly identified using the CoPR approach (Fig. 5). Chelocardin, which was
investigated in a phase II clinical trial in 1977, is active against tetracycline-resistant
pathogens (35). The biosynthetic gene cluster of Amycolatopsis sulphurea was recently
engineered for the synthesis of derivatives (52). The dual mode of action of chelocardin
was first described based on proteome profiling (34). At low concentrations, the
proteomic profile is more similar to that of the protein biosynthesis inhibitor tetracy-
cline, indicating that protein synthesis is inhibited, while with rising concentrations, the
similarity to membrane-targeting compounds like daptomycin increases. In the original
study, deriving this conclusion required elaborate one-on-one comparisons to each
proteomic profile in the library. CoPR scoring now rapidly revealed that anhydrotetra-
cycline also has a dual mechanism of action, while no marker proteins of protein
synthesis are upregulated in response to amidochelocardin. Structurally, anhydrotet-
racycline is very similar to tetracycline, while amidochelocardin is very similar to
chelocardin, showing that CoPR can distinguish dual mechanisms even between closely
related compounds.

Aside from assessing the novelty of antibiotic mechanisms, proteome profiling can
also serve to inform structure-activity relationship studies, as was shown for PM47, a
derivative of the fatty acid biosynthesis inhibitor platensimycin, for which proteome
analysis revealed that it no longer inhibits fatty acid biosynthesis (13). Proteome
analysis also offers a starting point for mechanism-of-action elucidation of compounds
with unprecedented targets. B. subtilis often reacts to the stress exerted by an antibiotic
by inducing proteins that counteract the disturbance of cellular homeostasis (10, 13).
The simplest reaction is the compensation of the loss of a particular function by the

FIG 7 Proteomic response of B. subtilis 168 to inhibition of trans-translation. (a) Similarity matrix comparing proteomic responses of B. subtilis to the indicated
compounds. Coloring indicates similarity, with high scores being close to 1 and indicated by a high intensity of blue color. (b) Comparison of marker proteins
of trans-translation inhibitors. Shown are regulation factors of marker proteins related to responses against oxidative stress and iron limitation. Averages from
three biological replicates with standard deviations are given for the marker proteins of each antibiotic (regulation factors of �2 in all replicates).
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upregulation of the target, as observed, for example, for translation inhibitors, tRNA
synthetase inhibitors, acyldepsipeptide (ClpP), and fatty acid biosynthesis inhibitors (10,
12, 13).

In previous analyses, the in-depth interpretation of proteome profiles based on
marker proteins has proven particularly useful for generating hypotheses on the
mechanism of action of antibiotics with nonprotein targets, like daptomycin or anti-
microbial peptides, which act on the cytoplasmic membrane (14, 27). Here, we used
proteomic profiling to investigate metal- and metalloid-containing antibiotics, revisit-
ing the first antibiotic, salvarsan, and investigating auranofin, an antirheumatic drug
with potential for repurposing. In 2005, 100 years after its discovery, the chemical
structure of salvarsan was finally solved (53). Its antimicrobial mechanism is believed to
be based on arsenic but has not been confirmed experimentally. Almost 40% of the
marker proteins for salvarsan are related to the detoxification of arsenic, replenishment
of the cysteine pool, and reaction to toxic protein modifications. Combining the
information on marker proteins and the similarity of the salvarsan proteomic profile to
that of As2O3, those of diamide and allicin (protein-thiol-modifying agents [40, 41]), and
that of auranofin (described to inhibit the bacterial thioredoxin reductase [37]), we
suggest that the antibiotic mechanism of salvarsan involves the targeting of protein
thiols (Fig. 6). Interestingly, the physiologically effective concentrations of auranofin,
salvarsan, and As2O3 are vastly different. The physiologically effective concentration of
auranofin is 0.06 �g/ml (88 nM), congruent with a single or a very small group of
thiol-containing protein targets, such as thioredoxin reductase. The physiologically
effective concentration of As2O3 (64 �g/ml [647 �M]) is on the order of that of diamide
(170 �g/ml [998 �M]), which reacts broadly with all thiols (40). The physiologically
effective concentration of salvarsan is 2 �g/ml (10.8 �M), almost 1 order of magnitude
lower than that of allicin (14 �g/ml [86 �M]). It remains to be investigated if the
comparably good antibacterial activity of salvarsan over As2O3 and diamide is due to
the improved delivery of the active compound to the target(s) in the cell or if salvarsan
increases the selectivity for certain critical protein thiols.

Complementary to target-centric approaches, our system-based approach provides
insights into the physiological impact of antibiotics. This can be exploited to study the
physiological importance or the mechanism of a cellular process. Many aspects of
ribosome function were elucidated using antibiotics. In such a chemical biology
approach, antibiotics are used to cause a rapid loss of a critical cellular function to then
observe the cellular response and deduce the impact of the loss of function on
physiology. We employed trans-translation inhibitors from a recent compound screen
(19) to study the physiology of ribosome rescue in B. subtilis. Many of the marker
proteins are indicative of oxidative stress and a disturbance of metal ion homeostasis
(Fig. 6). Since compensatory measures are often induced in response to antibiotic
stress, we hypothesize that ribosome rescue is of particular importance for the ability
of B. subtilis to deal with mRNAs affected by oxidative stress. It has been shown that
mRNAs are prime targets of oxidation by reactive oxygen species and that ribosomes
stall on oxidized mRNAs when decoding is prevented (50, 54).

As the study on trans-translation inhibitors shows, there is still much to learn about
basic cellular processes. The presented library of proteomic response profiles reveals
other gaps in our current understanding of bacterial physiology in general and the
responses to antibiotics in particular. Although we based this study on the well-
characterized model organism B. subtilis, across all proteome responses, 27% of the
marker proteins have uncharacterized or understudied functions. The compilation of
profiles enabled the deduction of marker proteins indicative of an antibiotic’s main
target area by association. Among those with high regulation factors are, for example,
YtrB/YtrE and YceC as marker proteins for agents with extracytoplasmic targets. Anti-
biotics might contribute to elucidating their functions. YtrB and YtrE, for instance, are
cytoplasmic components of an ABC transporter that we found to be upregulated in
response to lantibiotics. We showed that the constitutive production of the ABC
transporter protects cells from the inhibitory effect of nisin. As this example shows, in
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some instances, follow-up experiments might reveal strategies of B. subtilis and perhaps
related pathogens like Bacillus anthracis or S. aureus to cope with antibiotic stress and
stress in general.

Proteomic profiling provides valuable insights into the effects of antibiotics on
bacterial physiology and bacterial strategies to overcome antibiotic stress. The CoPR
approach maximizes the utility of proteomic profiling by facilitating rapid comparisons
of proteomic responses. We highlighted a variety of uses ranging from antibiotic
mechanism-of-action studies, to investigations of bacterial physiology using antibiotics
in a chemical biology approach, to analyses of gene function. Future applications may
include the characterization of the bacterial response to nonantibiotic drugs, which
have recently been shown to impact human commensals (55), or investigations of the
effects of secreted metabolites on microorganisms that share a habitat (17). By making
available the data and tools, we expect to expand the use of the technique across the
scientific community.

MATERIALS AND METHODS
Antibacterial agents. If not stated otherwise, substances were dissolved in dimethyl sulfoxide

(DMSO). 2-Carboxamido-2-deacetyl-chelocardin (amidochelocardin) was supplied by T. Lukezic and H.
Petkovic. AN3334 was provided by Anacore Pharmaceuticals Inc., Palo Alto, CA. Anhydrotetracycline,
GE2270A, linezolid, nalidixic acid, and nocathiacin I were purchased from Merck KgaA, Darmstadt,
Germany. Nalidixic acid was dissolved in H2O. As2O3 and As2O5 were purchased from Alfa Aesar,
Haverhill, MA. As2O3 was dissolved in 1 M NaOH and As2O5 in distilled H2O. ASD was synthesized/
purified as described previously by Salmi et al. (56) and dissolved in 0.9% NaCl. Auranofin was
purchased from Fisher Scientific, Hampton, NH. BA234 was prepared according to previously
described procedures (57), using osmocene carboxylic acid instead of ruthenocene carboxylic acid.
Cephalexin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), cinnamaldehyde, ciprofloxacin, monen-
sin, mupirocin, rotenone, and tunicamycin were purchased from Sigma-Aldrich, St. Louis, MO. Cipro-
floxacin was dissolved in 0.1 M NaOH. Monensin was dissolved in ethanol. Closthioamide was synthesized
as described previously by Kloss et al. (58). cXRX was supplied by K. Scheinpflug. Kirromycin was supplied
by S. Grond. KKL-35, KKL-40, and KKL-55 were supplied by K. C. Keiler. MP66 and MP159 were prepared
as described previously by Albada et al. (59). NV503 was synthesized as described below. PC190723 was
prepared as described previously (60). Salvarsan was prepared as described previously by Christiansen
and Fargher (61, 62). Squalamine was synthesized/purified as described previously by Zhang et al. (63)
and dissolved in H2O. Telithromycin was provided by Anacor Pharmaceuticals. UC41 was synthesized as
described previously by Czaplewski et al. (60).

Synthesis of NV503. All solvents were purified according to previously reported procedures, and the
reagents used were commercially available. Methanol (MeOH), ethyl acetate, and dichloromethane were
purchased from Carlo Erba Reagents (Val de Reuil, France) and used without further purification. Column
chromatography was performed on Carlo Erba Reagents silica gel (70 to 230 mesh). 1H nuclear magnetic
resonance (NMR) and 13C NMR spectra were recorded in deuterated methanol (CD3OD) on a Bruker AC
300 spectrometer working at 300 MHz and 75 MHz, respectively (s, singlet; d, doublet; t, triplet; q,
quadruplet; m, multiplet). Tetramethylsilane was used as the internal standard. All chemical shifts are
given in parts per million. Mass spectroscopy analyses were performed by Spectropole (Analytical
Laboratory) of Paul Cézanne University (Marseille, France). The purity of the compounds was checked by
analytical high-performance liquid chromatography (HPLC) (C18 column, eluent of CH3CN-water-
trifluoroacetic acid [TFA] [90:10:0.025, vol/vol/vol], and 0.5 to 1 ml/min) with a photodiode array (PDA)
detector spanning from 210 nm to 310 nm. All compounds possessed purity above 95%, as determined
by analytical HPLC-PDA analysis at 214 and 254 nm.

A mixture of progesterone (123 mg; 0.39 mmol), titanium(IV) isopropoxide (573 �l; 2.02 mmol), and
spermine (2.02 mmol) in absolute methanol (5 ml) was stirred under argon at room temperature for 12
h. Sodium borohydride (114 mg; 3 mmol) was then added at �78°C, and the resulting mixture was stirred
for an additional 2 h. The reaction was then quenched by adding water (1 ml) to the mixture, and stirring
was maintained at room temperature for 20 min. The resulting inorganic precipitate was filtered off over
a pad of Celite and washed with methanol and ethyl acetate. The combined organic extracts were dried
over Na2SO4, filtered, and concentrated in vacuo to afford the expected crude amino derivative, which
was purified by flash chromatography to afford the expected amino derivative. Purification by column
chromatography (silica gel; CH2Cl2-MeOH-NH4OH [32%], 7:3:1) afforded a pale-yellow solid in 63% yield.
1H NMR (300 MHz, CD3OD) � 5.28 (s, 1H), 3.69 to 3.54 (m, 1H), 3.13 (m, 1H), 2.78 to 2.68 (m, 15H), 2.32
to 0.76 (m, 40H). 13C NMR (75 MHz, CD3OD) � 148.60, 128.04, 71.22, 67.32, 59.50, 57.61, 56.24, 50.90, 45.96,
43.79, 41.01, 38.53, 33.45, 30.80, 28.59, 27.21, 25.55, 24.27, 22.63, 19.99, 15.91, 13.21. C31H58N4O mass
spectrometry (MS) with electrospray ionisation in positive mode (ESI�) m/z 503.4673 (100%, [M � H]�).

Proteome analysis. Bacillus subtilis 168 (trpC2) was cultured in Belitzky minimal medium (64) as
described previously (10) and exposed at an optical density at 500 nm (OD500) of 0.35 to the following
antibacterial agents at the indicated concentrations: amidochelocardin at 5, 10, and 20 �g/ml; AN3334
at 3 �g/ml; anhydrotetracycline at 0.5, 2, and 4 �g/ml; As2O3 at 64 �g/ml; As2O5 at 40 �g/ml; ASD at
2 �g/ml; auranofin at 0.06 �g/ml; BA234 at 6.25 �g/ml; CCCP at 0.5 �g/ml; cephalexin at 0.0675 �g/ml;
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cinnamaldehyde at 90 �g/ml; ciprofloxacin at 25 �g/ml; closthioamide at 0.7 �g/ml; cXRX at 16 �g/ml;
GE227A at 8 �g/ml; kirromycin at 50 �g/ml; kirrothricin C at 100 �g/ml; KKL-35 at 1 �g/ml; KKL-40 at
0.25 �g/ml; KKL-55 at 2 �g/ml; KKL-896 at 1 �g/ml; linezolid at 0.1 �g/ml; monensin at 3 �g/ml; L-MP66
at 5.25 �g/ml; D-MP66 at 3.75 �g/ml; MP159 at 5 �g/ml; mupirocin at 0.06 �g/ml; nalidixic acid at
250 �g/ml; nocathiacin I at 0.15 �g/ml; NV503 at 4.2 �g/ml; PC190723 at 64 �g/ml; rotenone at 20 �g/ml;
salvarsan at 2 �g/ml; squalamine at 1 �g/ml; telithromycin at 5 �g/ml; tunicamycin at 25 �g/ml; and
UC41 at 8 �g/ml.

In this study, pulse-labeling with L-[35S]methionine and the 2D-PAGE-based proteome analysis were
performed as described previously by Wenzel et al. (13), with the exception of kirrothricin C, which was
analyzed as described previously by Bandow et al. (10). Briefly, for radioactive labeling with
L-[35S]methionine, 5 ml of the bacterial culture was treated with an antibiotic for 10 min before 1.8 MBq
radioactive methionine (Hartmann Analytic, Braunschweig, Germany) was added. Incorporation was
stopped after 5 min by the addition of 1 mg/ml chloramphenicol and an excess of nonradioactive
L-methionine and cooling of the cells on ice. Cells were harvested and washed before cell disruption
using a VialTweeter sonicator (Hielscher, Teltow, Germany). Cell debris was removed by centrifugation,
and protein concentrations were estimated using Roti NanoQuant (Roth, Karlsruhe, Germany). For
radioactive gels, 50 �g of protein (300 �g for nonradioactive gels) was loaded onto 24-cm immobilized
pH gradient strips, pH 4 to 7 (GE Healthcare, Little Chalfont, United Kingdom), by passive rehydration for
18 h. Proteins were separated by isoelectric focusing in the first dimension using a Multiphore II
electrophoresis system (GE Healthcare). In the second dimension, proteins were separated according to
molecular size by SDS-PAGE using the Ettan DaltTwelve system (GE Healthcare). Under a few antibiotic
conditions (marked with an asterisk in the figures), the Millipore 2D gel electrophoresis system (Merck
KgaA) was used for SDS-PAGE. Radioactive gels were dried on Whatman paper and exposed to storage
phosphor screens (GE Healthcare). Screens were scanned using a Typhoon Trio� instrument (GE
Healthcare) with a 633-nm excitation wavelength and a 390-nm emission filter. Nonradioactive gels were
stained with 0.003% ruthenium(II)-tris(4,7)diphenyl-1,10-phenanthroline disulfonate and scanned on the
Typhoon Trio� instrument with excitation at 532 nm and a 610-nm emission filter. Image analysis was
performed as described previously by Bandow et al. (65) using Decodon Delta 2D 4.2.1 (Decodon,
Greifswald, Germany). After background subtraction, the signal intensities of protein spots were normal-
ized to the total signal on the autoradiograph and set in relation to the synthesis rate in the respective
control to obtain relative synthesis rates (regulation factors) (equation 1) for individual protein spots. To
be designated “marker proteins,” the relative synthesis rates had to be at least 2 in each biological
replicate, and the protein had to accumulate in sufficient amounts to allow protein identification from
a preparative gel.

RF �
relative signal intensityantibiotic treated

relative signal intensityuntreated control
(1)

where RF is the regulation factor of an individual protein spot.
Proteins were identified from preparative 2D gels after tryptic in-gel digestion by either matrix-

assisted laser desorption ionization–tandem time of flight (MALDI-ToF/ToF) MS (13) or nano ultraperfor-
mance liquid chromatography coupled tandem mass spectrometry with electrospray ionization (nUPLC-
ESI-MS/MS) (66) as described previously, and the data were uploaded to the PRIDE repository (67).

Data from the literature were included in the downstream analysis only when experiments were
performed according to the same protocols (10, 13) and satisfied the same quality standards. Thus, all
data included were recorded for B. subtilis 168 grown in Belitzky minimal medium, using radioactive
pulse-labeling to delineate relative synthesis rates, 2D-PAGE for protein separation, and mass spectrom-
etry for protein identification. For an overview of treatment times, concentrations used, and the number
of replicates of data gathered in this study and from the literature, see Data Set S1 in the supplemental
material.

Comparison of proteomic responses. RFs for marker proteins (see the definition above) were
determined based on the relative signal intensity on autoradiographs compared to untreated controls
(equation 1). To calculate CoPR scores, the data were prepared as follows. Regulation factors of the
independent replicates were averaged and logarithmized, and values for nonmarker proteins were set to
zero. If literature data lacked regulation factors due to the low abundance of a protein in the control, the
regulation factor was set to 20. If a protein was identified in several spots, the value in the library reflects
the regulation factor of the spot with the highest percent volume representing the most intense spot
with the highest protein synthesis rate. Unidentified marker proteins are omitted from the analysis.

Pairwise comparisons based on cosine similarity were performed using the regulation factors of an
antibiotic a �RFABa

� and an antibiotic b �RFABb
�, yielding a CoPR score for each pairwise comparison

(equation 2). In this approach, proteomic profiles are treated as vectors, with proteins as dimensions and
regulation factors as dilatation into these dimensions. A dot product is calculated, giving the sum of
products of all pairwise multiplications of regulation factors of one protein, under both conditions. To
give the CoPR score for the pairwise comparison, the dot product is divided by the product of the
multiplication of the vector lengths. A value of 1 represents perfect similarity between response profiles,
while a value of 0 represents perfect dissimilarity.

CoPR score �
�log10RFABa� · �log10RFABb�
� log10RFABa

� · � log10RFABa
�

(2)

where the CoPR is the comparison of proteomic responses score, RFABa
is the regulation factor of

antibiotic a, and RFABb
is the regulation factor of antibiotic b.
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Calculations were performed using Microsoft Excel and R 3.3.1 with the spatialEco package in version
1.1-0. For a step-by-step protocol, see the supplemental material.

Data availability. Data for protein identification by nUPLC-ESI-MS was uploaded to the PRIDE
repository (project name Comparison of Proteomic Responses; project accession number PXD011640
[http://www.ebi.ac.uk/pride/archive/projects/PXD011640]). Protein regulation factors can be found in
Data Set S1 in the supplemental material and the SubtiWiki repository (http://subtiwiki.uni-goettingen
.de/v4/downloads). Original proteomic profiles and a step-by-step protocol on how to perform the
mathematical comparison are available in the supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 6.8 MB.
SUPPLEMENTAL FILE 2, XLSX file, 1.7 MB.
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