451 research outputs found

    Adenosine and Stroke: Maximizing the Therapeutic Potential of Adenosine as a Prophylactic and Acute Neuroprotectant

    Get PDF
    Stroke is a leading cause of morbidity and mortality in the United States. Despite intensive research into the development of treatments that lessen the severity of cerebrovascular injury, no major therapies exist. Though the potential use of adenosine as a neuroprotective agent in the context of stroke has long been realized, there are currently no adenosine-based therapies for the treatment of cerebral ischemia and reperfusion. One of the major obstacles to developing adenosine-based therapies for the treatment of stroke is the prevalence of functional adenosine receptors outside the central nervous system. The activities of peripheral immune and vascular endothelial cells are particularly vulnerable to modulation via adenosine receptors. Many of the pathophysiological processes in stroke are a direct result of peripheral immune infiltration into the brain. Ischemic preconditioning, which can be induced by a number of stimuli, has emerged as a promising area of focus in the development of stroke therapeutics. Reprogramming of the brain and immune responses to adenosine signaling may be an underlying principle of tolerance to cerebral ischemia. Insight into the role of adenosine in various preconditioning paradigms may lead to new uses for adenosine as both an acute and prophylactic neuroprotectant

    IL-1α and TNF-α Down-Regulate CRH Receptor-2 mRNA Expression in the Mouse Heart

    Get PDF
    Two receptors (CRH receptor type 1 and CRH receptor type 2) have been identified for the stress-induced neuropeptide, CRH and related peptides, urocortin, and urocortin II. We previously found marked down-regulation of cardiac CRH receptor type 2 expression following administration of bacterial endotoxin, lipopolysaccharide, a model of systemic immune activation, and inflammation. We postulated that inflammatory cytokines may regulate CRH receptor type 2. We show that systemic IL-1α administration significantly down-regulates CRH receptor type 2 mRNA in mouse heart. In addition, TNFα treatment also reduces CRH receptor type 2 mRNA expression, although the effect was not as marked as with IL-1α. However, CRH receptor type 2 mRNA expression is not altered in adult mouse ventricular cardiomyocytes stimulated in vitro with TNFα or IL-1α. Thus, cytokine regulation may be indirect. Exogenous administration of corticosterone in vivo or acute restraint stress also reduces cardiac CRH receptor type 2 mRNA expression, but like cytokines, in vitro corticosterone treatment does not modulate expression in cardiomyocytes. Interestingly, treatment with urocortin significantly decreases CRH receptor type 2 mRNA in cultured cardiomyocytes. We speculate that in vivo, inflammatory mediators such as lipopolysaccharide and/or cytokines may increase urocortin, which in turn down-regulates CRH receptor type 2 expression in the heart. Because CRH and urocortin increase cardiac contractility and coronary blood flow, impaired CRH receptor type 2 function during systemic inflammation may ultimately diminish the adaptive cardiac response to adverse conditions

    CRF Receptor Antagonist Astressin-B Reverses and Prevents Alopecia in CRF Over-Expressing Mice

    Get PDF
    Corticotropin-releasing factor (CRF) signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE)-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse) injected peripherally once a day for 5 days in 4–9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF2 receptor antagonist, astressin2-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress

    Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    Get PDF
    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controlling innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes

    LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptor 4 (TLR4) is activated in response to cerebral ischemia leading to substantial brain damage. In contrast, mild activation of TLR4 by preconditioning with low dose exposure to lipopolysaccharide (LPS) prior to cerebral ischemia dramatically improves outcome by reprogramming the signaling response to injury. This suggests that TLR4 signaling can be altered to induce an endogenously neuroprotective phenotype. However, the TLR4 signaling events involved in this neuroprotective response are poorly understood. Here we define several molecular mediators of the primary signaling cascades induced by LPS preconditioning that give rise to the reprogrammed response to cerebral ischemia and confer the neuroprotective phenotype.</p> <p>Methods</p> <p>C57BL6 mice were preconditioned with low dose LPS prior to transient middle cerebral artery occlusion (MCAO). Cortical tissue and blood were collected following MCAO. Microarray and qtPCR were performed to analyze gene expression associated with TLR4 signaling. EMSA and DNA binding ELISA were used to evaluate NFκB and IRF3 activity. Protein expression was determined using Western blot or ELISA. MyD88-/- and TRIF-/- mice were utilized to evaluate signaling in LPS preconditioning-induced neuroprotection.</p> <p>Results</p> <p>Gene expression analyses revealed that LPS preconditioning resulted in a marked upregulation of anti-inflammatory/type I IFN-associated genes following ischemia while pro-inflammatory genes induced following ischemia were present but not differentially modulated by LPS. Interestingly, although expression of pro-inflammatory genes was observed, there was decreased activity of NFκB p65 and increased presence of NFκB inhibitors, including Ship1, Tollip, and p105, in LPS-preconditioned mice following stroke. In contrast, IRF3 activity was enhanced in LPS-preconditioned mice following stroke. TRIF and MyD88 deficient mice revealed that neuroprotection induced by LPS depends on TLR4 signaling via TRIF, which activates IRF3, but does not depend on MyD88 signaling.</p> <p>Conclusion</p> <p>Our results characterize several critical mediators of the TLR4 signaling events associated with neuroprotection. LPS preconditioning redirects TLR4 signaling in response to stroke through suppression of NFκB activity, enhanced IRF3 activity, and increased anti-inflammatory/type I IFN gene expression. Interestingly, this protective phenotype does not require the suppression of pro-inflammatory mediators. Furthermore, our results highlight a critical role for TRIF-IRF3 signaling as the governing mechanism in the neuroprotective response to stroke.</p

    Geologic controls on the recent evolution of oyster reefs in Apalachicola Bay and St. George Sound, Florida

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Estuarine, Coastal and Shelf Science 88 (2010): 385-394, doi:10.1016/j.ecss.2010.04.019.Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions in the bay and its late Holocene evolution. Sidescan-sonar imagery, bathymetry, high-resolution seismic profiles, and sediment cores show that oyster beds occupy the crests of a series of shoals that range from 1 to 7 km in length, trend roughly north-south perpendicular to the long axes of the bay and sound, and are asymmetrical with steeper sides facing to the west. Surface sediment samples show that the oyster beds consist of shelly sand, while much of the remainder of the bay floor is covered by mud delivered by the Apalachicola River. The present oyster reefs rest on sandy delta systems that advanced southward across the region between 6400 and 4400 yr BP when sea level was 4–6 m lower than present. Oysters started to colonize the region around 5100 yr BP and became extensive by 1200 and 2400 yr BP. Since 1200 yr BP, their aerial extent has decreased due to burial of the edges of the reefs by the prodelta mud that continues to be supplied by the Apalachicola River. Oyster reefs that are still active are narrower than the original beds, have grown vertically, and become asymmetrical in cross-section. Their internal bedding indicates they have migrated westward, suggesting a net westerly transport of sediment in the bay.Funding for this research was provided by the NOAA Coastal Services Center

    The MDM2-p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia.

    Get PDF
    Brain preconditioning (PC) refers to a state of transient tolerance against a lethal insult that can be evoked by a prior mild event. It is thought that PC may induce different pathways responsible for neuroprotection, which may involve the attenuation of cell damage pathways, including the apoptotic cell death. In this context, p53 is a stress sensor that accumulates during brain ischemia leading to neuronal death. The murine double minute 2 gene (MDM2), a p53-specific E3 ubiquitin ligase, is the main cellular antagonist of p53, mediating its degradation by the proteasome. Here, we study the role of MDM2-p53 pathway on PC-induced neuroprotection both in cultured neurons (in vitro) and rat brain (in vivo). Our results show that PC increased neuronal MDM2 protein levels, which prevented ischemiainduced p53 stabilization and neuronal death. Indeed, PC attenuated ischemia-induced activation of the p53/PUMA/caspase-3 signaling pathway. Pharmacological inhibition of MDM2-p53 interaction in neurons abrogated PC-induced neuroprotection against ischemia. Finally, the relevance of the MDM2-p53 pathway was confirmed in rat brain using a PC model in vivo. These findings demonstrate the key role of the MDM2-p53 pathway in PC-induced neuroprotection against a subsequent ischemic insult and poses MDM2 as an essential target in ischemic tolerance

    Regional genome transcriptional response of adult mouse brain to hypoxia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition the brain against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain.</p> <p>Result</p> <p>Pronounced changes of gene expression occurred after 3 hours of hypoxia (8% O<sub>2</sub>) and after 1 hour of re-oxygenation in all brain regions. The hypoxia-responsive genes were predominantly up-regulated in hindbrain and predominantly down-regulated in forebrain - possibly to support hindbrain survival functions at the expense of forebrain cognitive functions. The up-regulated genes had a significant role in cell survival and involved both shared and unshared signaling pathways among different brain regions. Up-regulation of transcriptional signaling including hypoxia inducible factor, insulin growth factor (IGF), the vitamin D3 receptor/retinoid X nuclear receptor, and glucocorticoid signaling was common to many brain regions. However, many of the hypoxia-regulated target genes were specific for one or a few brain regions. Cerebellum, for example, had 1241 transcripts regulated by hypoxia only in cerebellum but not in hippocampus; and, 642 (54%) had at least one hepatic nuclear receptor 4A (HNF4A) binding site and 381 had at least two HNF4A binding sites in their promoters. The data point to HNF4A as a major hypoxia-responsive transcription factor in cerebellum in addition to its known role in regulating erythropoietin transcription. The genes unique to hindbrain may play critical roles in survival during hypoxia.</p> <p>Conclusion</p> <p>Differences of forebrain and hindbrain hypoxia-responsive genes may relate to suppression of forebrain cognitive functions and activation of hindbrain survival functions, which may coordinately mediate the neuroprotection afforded by hypoxia preconditioning.</p
    corecore