102 research outputs found

    Computing the correlation between catalyst composition and its performance in the catalysed process

    No full text
    The methodology for computing correlations between continuous descriptors of catalytic materials and their performance in the catalysed process is addressed. Continuous descriptors are typically molar fractions of individual components of the catalyst, whereas the performance is represented most frequently by yield or selectivity of reaction products or conversion of key feed components. Measures of various kinds of correlation are recalled, and their descriptor-wise application to catalytic data for computing correlations between the composition and performance of catalysts is presented. The paper also compares the application of correlation measures to catalytic data on the one hand with the analysis of variance, on the other hand with the application of regression trees. As a case study, the presented approaches are applied to data from high-temperature synthesis of hydrocyanic acid

    The ocean carbon sink – impacts, vulnerabilities and challenges

    Get PDF
    Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air–sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed

    Neural network-based integration of polygenic and clinical information: development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK Biobank cohort

    Get PDF
    Background: In primary cardiovascular disease prevention, early identification of high-risk individuals is crucial. Genetic information allows for the stratification of genetic predispositions and lifetime risk of cardiovascular disease. However, towards clinical application, the added value over clinical predictors later in life is crucial. Currently, this genotype–phenotype relationship and implications for overall cardiovascular risk are unclear. Methods: In this study, we developed and validated a neural network-based risk model (NeuralCVD) integrating polygenic and clinical predictors in 395 713 cardiovascular disease-free participants from the UK Biobank cohort. The primary outcome was the first record of a major adverse cardiac event (MACE) within 10 years. We compared the NeuralCVD model with both established clinical scores (SCORE, ASCVD, and QRISK3 recalibrated to the UK Biobank cohort) and a linear Cox-Model, assessing risk discrimination, net reclassification, and calibration over 22 spatially distinct recruitment centres. Findings: The NeuralCVD score was well calibrated and improved on the best clinical baseline, QRISK3 (ΔConcordance index [C-index] 0·01, 95% CI 0·009–0·011; net reclassification improvement (NRI) 0·0488, 95% CI 0·0442–0·0534) and a Cox model (ΔC-index 0·003, 95% CI 0·002–0·004; NRI 0·0469, 95% CI 0·0429–0·0511) in risk discrimination and net reclassification. After adding polygenic scores we found further improvements on population level (ΔC-index 0·006, 95% CI 0·005–0·007; NRI 0·0116, 95% CI 0·0066–0·0159). Additionally, we identified an interaction of genetic information with the pre-existing clinical phenotype, not captured by conventional models. Additional high polygenic risk increased overall risk most in individuals with low to intermediate clinical risk, and age younger than 50 years. Interpretation: Our results demonstrated that the NeuralCVD score can estimate cardiovascular risk trajectories for primary prevention. NeuralCVD learns the transition of predictive information from genotype to phenotype and identifies individuals with high genetic predisposition before developing a severe clinical phenotype. This finding could improve the reprioritisation of otherwise low-risk individuals with a high genetic cardiovascular predisposition for preventive interventions. Funding: Charité–Universitätsmedizin Berlin, Einstein Foundation Berlin, and the Medical Informatics Initiative

    Next Generation Radiation Hard IMM Space Solar Cells

    Full text link
    High efficiency space solar cells based on the GaInP2/InGaAs/Ge triple junction lattice matched device with 1 sun, AM0 efficiencies of approximately 30% are commercially available from several companies. Multiple approaches have been suggested for significantly surpassing the 30% efficiency level, but achieving this in a commercially viable cell has not been easy. We review those approaches, pointing out the advantages and challenges of each. SolAero has been focused on developing the inverted metamorphic multi-junction (IMM) solar cell, and has recently demonstrated a radiation hard version. We present the most recent performance data, including the response to particle radiation. The IMM cell can be used in a number of rigid or flexible configurations, and considerable effort has been focused on cell packaging and panel integration. The IMM device is ready to start qualification to the ECSS and AIAA standards

    Location of the CD8 T Cell Epitope within the Antigenic Precursor Determines Immunogenicity and Protection against the Toxoplasma gondii Parasite

    Get PDF
    CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood.Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells. © 2013 Feliu et al

    Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It

    Get PDF
    IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.National Institutes of Health (U.S.)Massachusetts Life Sciences Center (New Investigator Award)National Institute of General Medical Sciences (U.S.) (Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33))Studienstiftung des deutschen VolkesCancer Research Institute (New York, N.Y.)Cleo and Paul Schimmel FoundationBayer HealthcareHuman Frontier Science Program (Strasbourg, France

    Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean

    Get PDF
    Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality-controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near-surface maximum rate of 1.80 ± 0.45 µmol kg−1 yr−1. Anthropogenic CO2 accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (δ13CDIC) was also determined and used as an independent test of our method. We calculated a volume-integrated anthropogenic CO2 accumulation rate of 2.8 ± 0.4 mg C m−3 yr−1 along the EEL, which is about double the global mean. The anthropogenic CO2 component accounts for only 31 ± 6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas

    Tandem application of C-C bond-forming reactions with reductive ozonolysis

    Get PDF
    Several variants of reductive ozonolysis, defined here as the in situ generation of aldehydes or ketones during ozonolytic cleavage of alkenes, are demonstrated to work effectively in tandem with a number of C-C bond-forming reactions. For reactions involving basic nucleophiles (1,2- addition of Grignard reagents, Wittig or Horner-Emmons olefinations, and directed Aldol reactions of lithium enolates) the one-pot process offers a rapid and high-yielding alternative to traditional two-step protocols
    corecore