126 research outputs found

    Eurasian perspective

    Get PDF
    Reproducing the tree cover changes throughout the Holocene is a challenge for land surface–atmosphere models. Here, results of a transient Holocene simulation of the coupled climate–carbon cycle model, CLIMBER2-LPJ, driven by changes in orbital forcing, are compared with pollen data and pollen-based reconstructions for several regions of Eurasia in terms of changes in tree fraction. The decline in tree fraction in the high latitudes suggested by data and model simulations is driven by a decrease in summer temperature over the Holocene. The cooler and drier trend at the eastern side of the Eurasian continent, in Mongolia and China, also led to a decrease in tree cover in both model and data. In contrast, the Holocene trend towards a cooler climate in the continental interior (Kazakhstan) is accompanied by an increase in woody cover. There a relatively small reduction in precipitation was likely compensated by lower evapotranspiration in comparison to the monsoon-affected regions. In general the model-data comparison demonstrates that climate-driven changes during the Holocene result in a non-homogeneous pattern of tree cover change across the Eurasian continent. For the Eifel region in Germany, the model suggests a relatively moist and cool climate and dense tree cover. The Holzmaar pollen record agrees with the model for the intervals 8–3 ka and 1.7–1.3 ka BP, but suggests great reduction of the tree cover 3–2 ka and after 1.3 ka BP, when highly developed settlements and agriculture spread in the region

    Multiplex recurrence networks

    Get PDF
    Peer reviewedPublisher PD

    New Evidence of Holocene Mass Wasting Events in Recent Volcanic Lakes from the French Massif Central (Lakes Pavin, Montcineyre and Chauvet) and Implications for Natural Hazards

    Get PDF
    International audienceHigh-resolution seismic profiling (12 kHz) surveys combined with sediment cores, radiocarbon dating, tephrochronology and multibeam bathymetry (when available) allow documentation of a range of Holocene mass wasting events in nearby contrasting lakes of volcanic origin in the French Massif Central (45°N, 2°E): two deep maar lakes (Pavin and Chauvet) and a shallow lake (Montcineyre) dammed by the growth of a volcano. In these lacustrine environments dominated by authigenic sedimentation, recent slide scars, acoustically transparent to chaotic lens-shaped bodies, slump deposits or reworked regional tephra layers suggest that subaqueous mass wasting processes may have been favoured by gas content in the sediments and lake level changes. While these events may have had a limited impact in both lakes Chauvet and Montcineyre, they apparently favoured the development of lacustrine meromicticity in maar Lake Pavin along with possible subaerial debris flows resulting from crater outburst events

    Biomolecular Evidence of Early Human Occupation of a High-Altitude Site in Western Central Asia During the Holocene

    Get PDF
    Reconstructions of early human occupation of high-altitude sites in Central Asia and possible migration routes during the Holocene are limited due to restricted archeological sample material. Consequently, there is a growing interest in alternative approaches to investigate past anthropogenic activity in this area. In this study, fecal biomarkers preserved in lake sediments from Lake Chatyr Kol (Tian Shan, Kyrgyzstan) were analyzed to reconstruct the local presence of humans and pastoral animals in this low-human-impact area in the past. Spanning the last ∼11,700 years, this high-altitude site (∼3,500 m above sea level) provides a continuous record of human occupancy in Western Central Asia. An early increase of human presence in the area during the mid-Holocene is marked by a sharp peak of the human fecal sterol coprostanol and its epimer epicoprostanol in the sediments. An associated increase in 5β-stigmastanol, a fecal biomarker deriving from herbivores indicates a human occupancy that most probably largely depended upon livestock. However, sterol profiles show that grazing animals had already occupied the catchment area of Lake Chatyr Kol before and also after a significant presence of humans. The biomarker evidence in this study demonstrates an early presence of humans in a high-altitude site in Central Asia at ∼5,900–4,000 a BP. Dry environmental conditions during this period likely made high altitude regions more accessible. Moreover, our results help to understand human migration in Western Central Asia during the early and mid-Holocene as part of a prehistoric Silk Road territory

    Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India

    Get PDF
    An unresolved issue in the vegetation ecology of the Indian subcontinent is whether its savannas, characterized by relatively open formations of deciduous trees in C4-grass dominated understories, are natural or anthropogenic. Historically, these ecosystems have widely been regarded as anthropogenic-derived, degraded descendants of deciduous forests. Despite recent work showing that modern savannas in the subcontinent fall within established bioclimatic envelopes of extant savannas elsewhere, the debate persists, at least in part because the regions where savannas occur also have a long history of human presence and habitat modification. Here we show for the first time, using multiple proxies for vegetation, climate and disturbances from high-resolution, well-dated lake sediments from Lonar Crater in peninsular India, that neither anthropogenic impact nor fire regime shifts, but monsoon weakening during the past ~ 6.0 kyr cal. BP, drove the expansion of savanna at the expense of forests in peninsular India. Our results provide unambiguous evidence for a climate-induced origin and spread of the modern savannas of peninsular India at around the mid-Holocene. We further propose that this savannization preceded and drove the introduction of agriculture and development of sedentism in this region, rather than vice-versa as has often been assumed

    Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation

    Get PDF
    Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (Pann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7 N, 100.5 E; north-east Tibetan Plateau), Gonghai Lake (38.9N, 112.2E; north China) and Sihailongwan Lake (42.3 N, 126.6 E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to radii between ca. 1000 and 1500 km because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships

    Can people change the ecological rules that appear general across space?

    Get PDF
    Aim: The projections of human impact on the environment and biodiversity patterns are crucial if we are to prevent their destruction. Such projections usually involve the assumption that the same human activities always affect biodiversity in the same way either in geographically distant areas within the same time scale or in the same areas in different periods. In this paper, plant and snail fossils from Central Europe that cover the last 12,000 years provide evidence against this assumption. Location: Central Europe. Methods: We examined fossil data on central European plants and snails and extracted time-series of (1) local species richness (alpha diversity) at a scale of approximately 300 m × 300 m and decays of (2) the Jaccard index and (3) Simpson's beta with increasing distance (up to approximately 400 km) through time. Results: We show that two vital biodiversity patterns follow neither oxygen-isotope nor borehole temperature proxies, but instead vary between archaeologically known periods, with the most noticeable and irreversible breaks (1) when arable agriculture was introduced into central Europe, (2) when the Roman Empire collapsed, and (3) during the event known as the 12th-century colonization in central Europe. The patterns computed from data across time sometimes contradicted the patterns computed across space. Main Conclusions: We therefore infer that people can, and sometimes have, contributed to temporal changes in ecological rules that are seemingly general across space. Our findings indicate that the changes in ecological rules are so substantial that efforts to project future biodiversity based on space-for-time substitution might fail, unless we gain knowledge about how these general rules are altered

    Carbon stable isotopes as a palaeoclimate proxy in vascular plant dominated peatlands

    Get PDF
    Carbon stable isotope (δ¹³C) records from vascular plant dominated peatlands have been used as a palaeoclimate proxy, but a better empirical understanding of fractionation processes in these ecosystems is required. Here, we test the potential of δ¹³C analysis of ombrotrophic restiad peatlands in New Zealand, dominated by the wire rush (Empodisma spp.), to provide a methodology for developing palaeoclimatic records. We took surface plant samples alongside measurements of water table depth and (micro)climate over spatial (six sites spanning > 10 latitude) and temporal (monthly measurements over 1 year) gradients and analysed the relationships between cellulose δ¹³C values and environmental parameters. We found strong, significant negative correlations between δ¹³C and temperature, photosynthetically active radiation and growing degree days above 0 C. No significant relationships were observed between δ¹³C and precipitation, relative humidity, soil moisture or water table depth, suggesting no growing season water limitation and a decoupling of the expected link between δ¹³C in vascular plants and hydrological variables. δ¹³C of Empodisma spp. roots may therefore provide a valuable temperature proxy in a climatically sensitive region, but further physiological and sub-fossil calibration studies are required to fully understand the observed signal
    corecore