260 research outputs found

    Embryological staging of the Zebra Finch, Taeniopygia guttata

    Get PDF
    Zebra Finches (Taeniopygia guttata) are the most commonly used laboratory songbird species, yet their embryological development has been poorly characterized. Most studies to date apply Hamburger and Hamilton stages derived from chicken development; however, significant differences in development between precocial and altricial species suggest that they may not be directly comparable. We provide the first detailed description of embryological development in the Zebra Finch under standard artificial incubation. These descriptions confirm that some of the features used to classify chicken embryos into stages are not applicable in an altricial bird such as the Zebra Finch. This staging protocol will help to standardize future studies of embryological development in the Zebra Finch. J. Morphol. 274:1090-1110, 2013. (c) 2013 Wiley Periodicals, Inc

    A Cell-Based Small Molecule Screening Method for Identifying Inhibitors of Epithelial-Mesenchymal Transition in Carcinoma

    Get PDF
    Epithelial Mesenchymal Transition (EMT) is a crucial mechanism for carcinoma progression, as it provides routes for in situ carcinoma cells to dissociate and become motile, leading to localized invasion and metastatic spread. Targeting EMT therefore represents an important therapeutic strategy for cancer treatment. The discovery of oncogene addiction in sustaining tumor growth has led to the rapid development of targeted therapeutics. Whilst initially optimized as anti-proliferative agents, it is likely that some of these compounds may inhibit EMT initiation or sustenance, since EMT is also modulated by similar signaling pathways that these compounds were designed to target. We have developed a novel screening assay that can lead to the identification of compounds that can inhibit EMT initiated by growth factor signaling. This assay is designed as a high-content screening assay where both cell growth and cell migration can be analyzed simultaneously via time-course imaging in multi-well plates. Using this assay, we have validated several compounds as viable EMT inhibitors. In particular, we have identified compounds targeting ALK5, MEK, and SRC as potent inhibitors that can interfere with EGF, HGF, and IGF-1 induced EMT signaling. Overall, this EMT screening method provides a foundation for improving the therapeutic value of recently developed compounds in advanced stage carcinoma

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Open data and digital morphology

    Get PDF
    Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise, that the widespread application of such methods would facilitate access to the underlying digital data, has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for 3D digital data publication, and review the issues around data storage, management and accessibility

    Scents of Adolescence: The Maturation of the Olfactory Phenotype in a Free-Ranging Mammal

    Get PDF
    Olfaction is an important sensory modality for mate recognition in many mammal species. Odorants provide information about the health status, genotype, dominance status and/or reproductive status. How and when odor profiles change during sexual maturation is, however often unclear, particularly in free-ranging mammals. Here, we investigated whether the wing sac odorant of male greater sac-winged bats (Saccopteryx bilineata, Emballonuridae) differs between young and adults, and thus offers information about sexual maturity to potential mating partners. Using gas chromatography – mass spectrometry, we found differences in the odorants of young and adult males prior and during, but not after the mating period. The wing sac odorant of adult males consists of several substances, such as Pyrocoll, 2,6,10-trimethyl-3-oxo-6,10-dodecadienolide, and a so far unidentified substance; all being absent in the odor profiles of juveniles prior to the mating season. During the mating season, these substances are present in most of the juvenile odorants, but still at lower quantities compared to the wing sac odorants of adults. These results suggest that the wing sac odorant of males encodes information about age and/or sexual maturity. Although female S. bilineata start to reproduce at the age of half a year, most males of the same age postpone the sexual maturation of their olfactory phenotype until after the first mating season

    Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 30 (2011): 1005-1010, doi:10.1007/s00338-011-0791-x.Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialisation and foraging behaviours.This project was funded in part by a National Science Foundation (USA) Graduate Research Fellowship to MLB.2012-06-1

    Digital Cranial Endocast of Hyopsodus (Mammalia, “Condylarthra”): A Case of Paleogene Terrestrial Echolocation?

    Get PDF
    We here describe the endocranial cast of the Eocene archaic ungulate Hyopsodus lepidus AMNH 143783 (Bridgerian, North America) reconstructed from X-ray computed microtomography data. This represents the first complete cranial endocast known for Hyopsodontinae. The Hyopsodus endocast is compared to other known “condylarthran” endocasts, i. e. those of Pleuraspidotherium (Pleuraspidotheriidae), Arctocyon (Arctocyonidae), Meniscotherium (Meniscotheriidae), Phenacodus (Phenacodontidae), as well as to basal perissodactyls (Hyracotherium) and artiodactyls (Cebochoerus, Homacodon). Hyopsodus presents one of the highest encephalization quotients of archaic ungulates and shows an “advanced version” of the basal ungulate brain pattern, with a mosaic of archaic characters such as large olfactory bulbs, weak ventral expansion of the neopallium, and absence of neopallium fissuration, as well as more specialized ones such as the relative reduction of the cerebellum compared to cerebrum or the enlargement of the inferior colliculus. As in other archaic ungulates, Hyopsodus midbrain exposure is important, but it exhibits a dorsally protruding largely developed inferior colliculus, a feature unique among “Condylarthra”. A potential correlation between the development of the inferior colliculus in Hyopsodus and the use of terrestrial echolocation as observed in extant tenrecs and shrews is discussed. The detailed analysis of the overall morphology of the postcranial skeleton of Hyopsodus indicates a nimble, fast moving animal that likely lived in burrows. This would be compatible with terrestrial echolocation used by the animal to investigate subterranean habitat and/or to minimize predation during nocturnal exploration of the environment

    Food supplements increase adult tarsus length, but not growth rate, in an island population of house sparrows (Passer domesticus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variation in food supply during early development can influence growth rate and body size in many species. However, whilst the detrimental effects of food restriction have often been studied in natural populations, how young individuals respond to an artificial increase in food supply is rarely investigated. Here, we investigated both the short-term and long-term effects of providing house sparrow chicks with food supplements during a key period of growth and development and assessed whether providing food supplements had any persistent effect upon adult size (measured here as tarsus length).</p> <p>Results</p> <p>Male nestlings tended to reach higher mass asymptotes than females. Furthermore, brood size was negatively associated with a chick's asymptotic mass. However, providing food supplements had no influence upon the growth rate or the asymptotic mass of chicks. Adults that received food supplements as chicks were larger, in terms of their tarsus length, than adults that did not receive extra food as chicks. In addition, the variation in tarsus length amongst adult males that were given food supplements as chicks was significantly less than the variance observed amongst males that did not receive food supplements.</p> <p>Conclusions</p> <p>Our results demonstrate that the food supply chicks experience during a critical developmental period can have a permanent effect upon their adult phenotype. Furthermore, providing extra food to chicks resulted in sex-biased variance in a size-related trait amongst adults, which shows that the degree of sexual size dimorphism can be affected by the environment experienced during growth.</p
    corecore