189 research outputs found

    RGB-D Mapping and Tracking in a Plenoxel Radiance Field

    Full text link
    Building on the success of Neural Radiance Fields (NeRFs), recent years have seen significant advances in the domain of novel view synthesis. These models capture the scene's volumetric radiance field, creating highly convincing dense photorealistic models through the use of simple, differentiable rendering equations. Despite their popularity, these algorithms suffer from severe ambiguities in visual data inherent to the RGB sensor, which means that although images generated with view synthesis can visually appear very believable, the underlying 3D model will often be wrong. This considerably limits the usefulness of these models in practical applications like Robotics and Extended Reality (XR), where an accurate dense 3D reconstruction otherwise would be of significant value. In this technical report, we present the vital differences between view synthesis models and 3D reconstruction models. We also comment on why a depth sensor is essential for modeling accurate geometry in general outward-facing scenes using the current paradigm of novel view synthesis methods. Focusing on the structure-from-motion task, we practically demonstrate this need by extending the Plenoxel radiance field model: Presenting an analytical differential approach for dense mapping and tracking with radiance fields based on RGB-D data without a neural network. Our method achieves state-of-the-art results in both the mapping and tracking tasks while also being faster than competing neural network-based approaches.Comment: *The two authors contributed equally to this pape

    Removing Adverse Volumetric Effects From Trained Neural Radiance Fields

    Full text link
    While the use of neural radiance fields (NeRFs) in different challenging settings has been explored, only very recently have there been any contributions that focus on the use of NeRF in foggy environments. We argue that the traditional NeRF models are able to replicate scenes filled with fog and propose a method to remove the fog when synthesizing novel views. By calculating the global contrast of a scene, we can estimate a density threshold that, when applied, removes all visible fog. This makes it possible to use NeRF as a way of rendering clear views of objects of interest located in fog-filled environments. Additionally, to benchmark performance on such scenes, we introduce a new dataset that expands some of the original synthetic NeRF scenes through the addition of fog and natural environments. The code, dataset, and video results can be found on our project page: https://vegardskui.com/fognerf/Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Akzeptanz, Rollendifferenzierung und geschlechtsspezifisches Verhalten in Dyaden bei Botanischen Bestimmungsübungen: Ein Vergleich zweier Medien

    Full text link
    Die vorliegende Studie beschreibt geschlechts- und medienspezifische Effekte bei der Bestimmung von Pflanzen. Das Ziel bestand darin, explorativ zu untersuchen, welche Auswirkungen die Arbeit mit einer Online-Lernumgebung im Gegensatz zu bisherigen Bestimmungsbüchern auf die Prozesse in gemischt-geschlechtlichen Dyaden hat. Hierzu wurden vorrangig die Anzahlen medien- und pflanzenbezogener Aktionen der Probanden untersucht. Generell zeigt die Studie, dass keine schwerwiegenden geschlechtsspezifischen Effekte zu erwarten sind. Allerdings muss bei der Implementierung der Lernumgebung darauf geachtet werden, dass keine Rollendifferenzierung derart entsteht, dass innerhalb der Lerndyaden ein Proband den Computer bedient und der andere die Pflanze untersucht. Die Einstellung der Probanden gegenüber der neuen Lernumgebung war positiv, so dass von Seiten der Studenten keine Akzeptanzprobleme bezüglich der Implementierung in die Kurse zu erwarten sind

    Monitoring Algal Blooms with Complementary Sensors on Multiple Spatial and Temporal Scales

    Get PDF
    Climate change, and other human-induced impacts, are severely increasing the intensity and occurrences of algal blooms in coastal regions (IPCC, 2022). Ocean warming, marine heatwaves, and eutrophication promote suitable conditions for rapid phytoplankton growth and biomass accumulation. An increase in such primary producers provides food for marine organisms, and phytoplankton play an important global role in fixing atmospheric carbon dioxide and producing much of the oxygen we breathe. But harmful algal blooms (HABs) can also form, and they may adversely affect the ecosystem by reducing oxygen availability in the water, releasing toxic substances, clogging fish gills, and diminishing biodiversity. Understanding, forecasting, and ultimately mitigating HAB events could reduce their impact on wild fish populations, help aquaculture producers avoid losses, and facilitate a healthy ocean. Phytoplankton respond rapidly to changes in the environment, and measuring the distribution of a bloom and its species composition and abundance is essential for determining its ecological impact and potential for harm. Satellite remote sensing of chlorophyll concentration has been used extensively to observe the development of algal blooms. Although this tool has wide spatial and temporal (nearly daily) coverage, it is limited to surface ocean waters and cloud-free days. Microscopic analyses of water and net samples allow much closer examination of the species present in a bloom and their abundance, but this is a time-consuming process that collects only discrete point samples, sparsely distributed in space and time. Neither of these methods alone captures the rapid evolution of algal blooms, the spatial and temporal patchiness of their distributions, or their high local variability. In situ optical devices and imaging sensors mounted on mobile platforms such as autonomous underwater vehicles (AUVs) and uncrewed surface vehicles (USVs) capture fine-scale temporal trends in plankton communities, while uncrewed aerial vehicles (UAVs) complement satellite remote sensing. Use of such autonomous platforms offers the flexibility to react to local conditions with adaptive sampling techniques in order to examine the marine environments in real time. Here we present an integrated approach to observing blooms—an “observational pyramid”—that includes both classical and newer, complementary observation methods (Figure 1). We aim to identify trends in phytoplankton blooms in a region with strong aquaculture activity on the Atlantic coast of mid-Norway. Field campaigns were carried out in consecutive springs (2021 and 2022) in Frohavet, an area of sea sheltered by the Froan archipelago (Figure 2). The region is a shallow, highly productive basin with abundant fishing and a growing aquaculture industry. Typically, there are one or more large algal blooms here during the spring months. We use multi-instrumentation from macro- to a microscale perspectives, combined with oceanographic modeling and ground truthing, to provide tools for early algal bloom detection

    Impact of a booster dose on SARS-CoV2 mRNA vaccine-specific humoral-, B- and T cell immunity in pediatric stem cell transplant recipients

    Get PDF
    Stem cell transplant recipients (SCTR) are imperiled to increased risks after SARS-CoV2 infection, supporting the need for effective vaccination strategies for this vulnerable group. With respect to pediatric patients, data on immunogenicity of SARS-CoV2 mRNA-based vaccination is limited. We therefore comprehensively examined specific humoral, B- and T cell responses in a cohort of 2-19 year old SCTR after the second and third vaccine dose. Only after booster vaccination, transplant recipients reached similar levels of vaccine-specific IgG, IgA and neutralizing antibodies against omicron variant as age-matched controls. Although frequencies of SARS-CoV2 specific B cells increased after the third dose, they were still fourfold reduced in patients compared to controls. Overall, the majority of individuals enrolled mounted SARS-CoV2 Spike protein-specific CD4+ T helper cell responses with patients showing significantly higher portions than controls after the third dose. With respect to functionality, however, SCTR were characterized by reduced frequencies of specific interferon gamma producing CD4+ T cells, along with an increase in IL-2 producers. In summary, our data identify distinct quantitative and qualitative impairments within the SARS-CoV2 vaccination specific B- and CD4+ T cell compartments. More importantly, humoral analyses highlight the need for a booster vaccination of SCTR particularly for development of neutralizing antibodies

    Evaluation at the Federal University of Applied Adminstrative Sciences

    Get PDF
    Dulisch, Linssen und Reiter (2001) legten ein umfassendes Evaluationskonzept für die FH Bund vor. In den zehn Fachbereichen und im Zentralbereich der FH Bund erfolgt/e eine Diskussion, Modifikation und konkrete Anpassung an die Belange vor Ort. Dieser Prozess wurde in einer Evaluationtagung an der FH Bund im Juni 2003 gebündelt. Die Tagung zeigte, dass alle Fachbereiche und der Zentralbereich Fortschritte machen, wenn auch in unterschiedlichem Tempo. Dieser Band dokumentiert den Status Quo der Evaluation in den Fachbereichen und dem Zentralbereich und folgt damit § 6 Hochschulrahmengesetz (HRG), wonach die Arbeit der Hochschulen bewertet und das Ergebnis der Bewertung veröffentlicht werden soll. Inhaltsübersicht: - Evaluation an Fachhochschulen - Überblick - Empfehlungen des Benchmarking Clubs - Evaluationstagung der FH Bund 2003 - Zentralbereich - Allgemeine und Innere Verwaltung - Arbeitsverwaltung - Auswärtige Angelegenheiten - Bundesgrenzschutz - Bundeswehrverwaltung - Finanzen - Landwirtschaftliche Sozialversicherung - Öffentliche Sicherheit - Gesamtkonzept - Öffentliche Sicherheit - Abteilung Kriminalpolizei - Sozialversicherung - Wetterdiens

    Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea

    Get PDF
    Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean. Comparative analysis identified seven major marine AOA genotypic groups having gene content correlated with their distinctive biogeographies. Phosphorus and ammonia availabilities as well as hydrostatic pressure were identified as selective forces driving marine AOA genotypic and gene content variability in different oceanic regions. Notably, AOA methylphosphonate biosynthetic genes span diverse oceanic provinces, reinforcing their importance for methane production in the ocean. Together, our combined comparative physiological, genomic, and metagenomic analyses provide a comprehensive view of the biogeography of globally abundant AOA and their adaptive radiation into a vast range of marine and terrestrial habitats

    High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis.

    Get PDF
    Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations
    corecore