306 research outputs found
Nanoarray-Enhanced Micromechanical Pressure Sensor with Remote Optical Readout
We demonstrate a compact implantable intraocular pressure (IOP) sensor with remote optical readout for glaucoma research and patient management. Using non-invasive white light, we excite the sensor’s pressure-sensitive optomechanical cavity and detect the reflected light, whose optical signature changes as a function of IOP. The sensor has provided robust measurements of hydrostatic pressure between 10-60 mmHg with an accuracy of 0.15 mmHg
Real-Time In Vivo Intraocular Pressure Monitoring using an Optomechanical Implant and an Artificial Neural Network
Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments and improves the overall practicality of the optical IOP-monitoring approach
Real-Time In Vivo Intraocular Pressure Monitoring using an Optomechanical Implant and an Artificial Neural Network
Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments and improves the overall practicality of the optical IOP-monitoring approach
In Vivo Intraocular Pressure Measurements Using A Miniaturized Nano-Photonic Sensor Implant
Purpose : We have been developing a nanophotonic pressure sensor whose optical resonance is directly related to intraocular pressure (IOP). Bench testing has demonstrated sensor near-infrared (NIR) reflectance to accurately track pressures from 0-50 mmHg. The current study examined sensor performance following implantation into rabbit eyes for up to one month
A microscale optical implant for continuous in vivo monitoring of intraocular pressure
Intraocular pressure (IOP) is a key clinical parameter in glaucoma management. However, despite the potential utility of daily measurements of IOP in the context of disease management, the necessary tools are currently lacking, and IOP is typically measured only a few times a year. Here we report on a microscale implantable sensor that could provide convenient, accurate, on-demand IOP monitoring in the home environment. When excited by broadband near-infrared (NIR) light from a tungsten bulb, the sensor’s optical cavity reflects a pressure-dependent resonance signature that can be converted to IOP. NIR light is minimally absorbed by tissue and is not perceived visually. The sensor’s nanodot-enhanced cavity allows for a 3–5 cm readout distance with an average accuracy of 0.29 mm Hg over the range of 0–40 mm Hg. Sensors were mounted onto intraocular lenses or silicone haptics and secured inside the anterior chamber in New Zealand white rabbits. Implanted sensors provided continuous in vivo tracking of short-term transient IOP elevations and provided continuous measurements of IOP for up to 4.5 months
DiMANI: diffusion MRI for anatomical nuclei imaging—Application for the direct visualization of thalamic subnuclei
The thalamus is a centrally located and heterogeneous brain structure that plays a critical role in various sensory, motor, and cognitive processes. However, visualizing the individual subnuclei of the thalamus using conventional MRI techniques is challenging. This difficulty has posed obstacles in targeting specific subnuclei for clinical interventions such as deep brain stimulation (DBS). In this paper, we present DiMANI, a novel method for directly visualizing the thalamic subnuclei using diffusion MRI (dMRI). The DiMANI contrast is computed by averaging, voxelwise, diffusion-weighted volumes enabling the direct distinction of thalamic subnuclei in individuals. We evaluated the reproducibility of DiMANI through multiple approaches. First, we utilized a unique dataset comprising 8 scans of a single participant collected over a 3-year period. Secondly, we quantitatively assessed manual segmentations of thalamic subnuclei for both intra-rater and inter-rater reliability. Thirdly, we qualitatively correlated DiMANI imaging data from several patients with Essential Tremor with the localization of implanted DBS electrodes and clinical observations. Lastly, we demonstrated that DiMANI can provide similar features at 3T and 7T MRI, using varying numbers of diffusion directions. Our results establish that DiMANI is a reproducible and clinically relevant method to directly visualize thalamic subnuclei. This has significant implications for the development of new DBS targets and the optimization of DBS therapy
Biocompatible Multifunctional Black-Silicon for Implantable Intraocular Sensor
Multifunctional black-silicon (b-Si) integrated on the surface of an implantable intraocular pressure sensor significantly improves sensor performance and reliability in six-month in vivo studies. The antireflective properties of b-Si triples the signal-to-noise ratio and increases the optical readout distance to a clinically viable 12 cm. Tissue growth and inflammation response on the sensor is suppressed demonstrating desirable anti-biofouling properties
Biocompatible Multifunctional Black-Silicon for Implantable Intraocular Sensor
Multifunctional black-silicon (b-Si) integrated on the surface of an implantable intraocular pressure sensor significantly improves sensor performance and reliability in six-month in vivo studies. The antireflective properties of b-Si triples the signal-to-noise ratio and increases the optical readout distance to a clinically viable 12 cm. Tissue growth and inflammation response on the sensor is suppressed demonstrating desirable anti-biofouling properties
Acoustic Communication for Medical Nanorobots
Communication among microscopic robots (nanorobots) can coordinate their
activities for biomedical tasks. The feasibility of in vivo ultrasonic
communication is evaluated for micron-size robots broadcasting into various
types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff
between efficient acoustic generation and attenuation for communication over
distances of about 100 microns. Based on these results, we find power available
from ambient oxygen and glucose in the bloodstream can readily support
communication rates of about 10,000 bits/second between micron-sized robots. We
discuss techniques, such as directional acoustic beams, that can increase this
rate. The acoustic pressure fields enabling this communication are unlikely to
damage nearby tissue, and short bursts at considerably higher power could be of
therapeutic use.Comment: added discussion of communication channel capacity in section
Chemical Power for Microscopic Robots in Capillaries
The power available to microscopic robots (nanorobots) that oxidize
bloodstream glucose while aggregated in circumferential rings on capillary
walls is evaluated with a numerical model using axial symmetry and
time-averaged release of oxygen from passing red blood cells. Robots about one
micron in size can produce up to several tens of picowatts, in steady-state, if
they fully use oxygen reaching their surface from the blood plasma. Robots with
pumps and tanks for onboard oxygen storage could collect oxygen to support
burst power demands two to three orders of magnitude larger. We evaluate
effects of oxygen depletion and local heating on surrounding tissue. These
results give the power constraints when robots rely entirely on ambient
available oxygen and identify aspects of the robot design significantly
affecting available power. More generally, our numerical model provides an
approach to evaluating robot design choices for nanomedicine treatments in and
near capillaries.Comment: 28 pages, 7 figure
- …