826 research outputs found

    Functional optimization of the arterial network

    Full text link
    We build an evolutionary scenario that explains how some crucial physiological constraints in the arterial network of mammals - i.e. hematocrit, vessels diameters and arterial pressure drops - could have been selected by evolution. We propose that the arterial network evolved while being constrained by its function as an organ. To support this hypothesis, we focus our study on one of the main function of blood network: oxygen supply to the organs. We consider an idealized organ with a given oxygen need and we optimize blood network geometry and hematocrit with the constraint that it must fulfill the organ oxygen need. Our model accounts for the non-Newtonian behavior of blood, its maintenance cost and F\aa hr\ae us effects (decrease in average concentration of red blood cells as the vessel diameters decrease). We show that the mean shear rates (relative velocities of fluid layers) in the tree vessels follow a scaling law related to the multi-scale property of the tree network, and we show that this scaling law drives the behavior of the optimal hematocrit in the tree. We apply our scenario to physiological data and reach results fully compatible with the physiology: we found an optimal hematocrit of 0.43 and an optimal ratio for diameter decrease of about 0.79. Moreover our results show that pressure drops in the arterial network should be regulated in order for oxygen supply to remain optimal, suggesting that the amplitude of the arterial pressure drop may have co-evolved with oxygen needs.Comment: Shorter version, misspelling correctio

    Spectral identification of networks with inputs

    Get PDF
    We consider a network of interconnected dynamical systems. Spectral network identification consists in recovering the eigenvalues of the network Laplacian from the measurements of a very limited number (possibly one) of signals. These eigenvalues allow to deduce some global properties of the network, such as bounds on the node degree. Having recently introduced this approach for autonomous networks of nonlinear systems, we extend it here to treat networked systems with external inputs on the nodes, in the case of linear dynamics. This is more natural in several applications, and removes the need to sometimes use several independent trajectories. We illustrate our framework with several examples, where we estimate the mean, minimum, and maximum node degree in the network. Inferring some information on the leading Laplacian eigenvectors, we also use our framework in the context of network clustering.Comment: 8 page

    Spectral identification of networks using sparse measurements

    Full text link
    We propose a new method to recover global information about a network of interconnected dynamical systems based on observations made at a small number (possibly one) of its nodes. In contrast to classical identification of full graph topology, we focus on the identification of the spectral graph-theoretic properties of the network, a framework that we call spectral network identification. The main theoretical results connect the spectral properties of the network to the spectral properties of the dynamics, which are well-defined in the context of the so-called Koopman operator and can be extracted from data through the Dynamic Mode Decomposition algorithm. These results are obtained for networks of diffusively-coupled units that admit a stable equilibrium state. For large networks, a statistical approach is considered, which focuses on spectral moments of the network and is well-suited to the case of heterogeneous populations. Our framework provides efficient numerical methods to infer global information on the network from sparse local measurements at a few nodes. Numerical simulations show for instance the possibility of detecting the mean number of connections or the addition of a new vertex using measurements made at one single node, that need not be representative of the other nodes' properties.Comment: 3

    Extreme phase sensitivity in systems with fractal isochrons

    Full text link
    Sensitivity to initial conditions is usually associated with chaotic dynamics and strange attractors. However, even systems with (quasi)periodic dynamics can exhibit it. In this context we report on the fractal properties of the isochrons of some continuous-time asymptotically periodic systems. We define a global measure of phase sensitivity that we call the phase sensitivity coefficient and show that it is an invariant of the system related to the capacity dimension of the isochrons. Similar results are also obtained with discrete-time systems. As an illustration of the framework, we compute the phase sensitivity coefficient for popular models of bursting neurons, suggesting that some elliptic bursting neurons are characterized by isochrons of high fractal dimensions and exhibit a very sensitive (unreliable) phase response.Comment: 32 page

    Global analysis of a continuum model for monotone pulse-coupled oscillators

    Full text link
    We consider a continuum of phase oscillators on the circle interacting through an impulsive instantaneous coupling. In contrast with previous studies on related pulse-coupled models, the stability results obtained in the continuum limit are global. For the nonlinear transport equation governing the evolution of the oscillators, we propose (under technical assumptions) a global Lyapunov function which is induced by a total variation distance between quantile densities. The monotone time evolution of the Lyapunov function completely characterizes the dichotomic behavior of the oscillators: either the oscillators converge in finite time to a synchronous state or they asymptotically converge to an asynchronous state uniformly spread on the circle. The results of the present paper apply to popular phase oscillators models (e.g. the well-known leaky integrate-and-fire model) and draw a strong parallel between the analysis of finite and infinite populations. In addition, they provide a novel approach for the (global) analysis of pulse-coupled oscillators.Comment: 33 page

    Linear identification of nonlinear systems: A lifting technique based on the Koopman operator

    Get PDF
    We exploit the key idea that nonlinear system identification is equivalent to linear identification of the socalled Koopman operator. Instead of considering nonlinear system identification in the state space, we obtain a novel linear identification technique by recasting the problem in the infinite-dimensional space of observables. This technique can be described in two main steps. In the first step, similar to the socalled Extended Dynamic Mode Decomposition algorithm, the data are lifted to the infinite-dimensional space and used for linear identification of the Koopman operator. In the second step, the obtained Koopman operator is "projected back" to the finite-dimensional state space, and identified to the nonlinear vector field through a linear least squares problem. The proposed technique is efficient to recover (polynomial) vector fields of different classes of systems, including unstable, chaotic, and open systems. In addition, it is robust to noise, well-suited to model low sampling rate datasets, and able to infer network topology and dynamics.Comment: 6 page

    Geometric Properties of Isostables and Basins of Attraction of Monotone Systems

    Get PDF
    In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.Comment: 12 pages, to appear in IEEE Transaction on Automatic Contro

    Global computation of phase-amplitude reduction for limit-cycle dynamics

    Get PDF
    Recent years have witnessed increasing interest to phase-amplitude reduction of limit-cycle dynamics. Adding an amplitude coordinate to the phase coordinate allows to take into account the dynamics transversal to the limit cycle and thereby overcomes the main limitations of classic phase reduction (strong convergence to the limit cycle and weak inputs). While previous studies mostly focus on local quantities such as infinitesimal responses, a major and limiting challenge of phase-amplitude reduction is to compute amplitude coordinates globally, in the basin of attraction of the limit cycle. In this paper, we propose a method to compute the full set of phase-amplitude coordinates in the large. Our method is based on the so-called Koopman (composition) operator and aims at computing the eigenfunctions of the operator through Laplace averages (in combination with the harmonic balance method). This yields a forward integration method that is not limited to two-dimensional systems. We illustrate the method by computing the so-called isostables of limit cycles in two, three, and four-dimensional state spaces, as well as their responses to strong external inputs.Comment: 26 page

    Operator-Theoretic Characterization of Eventually Monotone Systems

    Full text link
    Monotone systems are dynamical systems whose solutions preserve a partial order in the initial condition for all positive times. It stands to reason that some systems may preserve a partial order only after some initial transient. These systems are usually called eventually monotone. While monotone systems have a characterization in terms of their vector fields (i.e. Kamke-Muller condition), eventually monotone systems have not been characterized in such an explicit manner. In order to provide a characterization, we drew inspiration from the results for linear systems, where eventually monotone (positive) systems are studied using the spectral properties of the system (i.e. Perron-Frobenius property). In the case of nonlinear systems, this spectral characterization is not straightforward, a fact that explains why the class of eventually monotone systems has received little attention to date. In this paper, we show that a spectral characterization of nonlinear eventually monotone systems can be obtained through the Koopman operator framework. We consider a number of biologically inspired examples to illustrate the potential applicability of eventual monotonicity.Comment: 13 page
    • …
    corecore