156 research outputs found

    How was the activity? A visualization support for a case of location-based learning design

    Get PDF
    Over the last few years, the use of mobile technologies has brought the formulation of location-based learning approaches shaping new or enhanced educational activities. Involving teachers in the design of these activities is important because the designs need to be aligned with the requirements of the specific educational settings. Yet analysing the implementation of the activities with students is also critical, not only for assessment purposes but also for enabling the identification of learning design elements that should be revised and improved. This paper studies a case that applies visualizations to support students' self-assessment and teachers' inquiry of a mobile learning design. The design is a gamified location-based learning activity composed by geolocated questions and implemented with the “QuesTInSitu: The Game” mobile application. The activity was designed by seven teachers and enacted by 81 secondary education students organized in a total of 23 groups. Log files, gathered from “QuesTInSitu: The Game,” provided the data for the visualizations, which represented relevant aspects of the group activity enactment (both time used to answer questions and to reach the geographical zone of the questions, scores obtained per zone, etc). On the one hand, the visualizations were discussed with the teachers as a learning analytics tool potentially useful to consider when redesigning the activity, if needed. On the other hand, the study shows that the visualizations led students to make a better diagnosis of their own activity performance

    A rapid review of serious games: from healthcare education to dental education

    Get PDF
    Introduction: Games involving technology have the potential to enhance hand-eye coordination and decision-making skills. As a result, game characteristics have been applied to education and training, where they are known as serious games. There is an increase in the volume of literature on serious games in healthcare education; however, evidence on their impact is still ambiguous. Aims: The aims of this study were (1), to identify high-quality evidence (systematic reviews or meta-analyses) regarding impacts of serious games on healthcare education; and (2), to explore evidence regarding impacts of serious games in dental education. Methods: A rapid review of the literature was undertaken to synthesise available evidence and examine serious games in healthcare education (Stage 1) and dental education (Stage 2). Results: Nine systematic reviews were included in Stage 1, four of which were of high, three of moderate, and two of low quality. For Stage 2, two randomised control trials with moderate quality were included. The findings demonstrated that serious games are potentially effective learning tools in terms of knowledge and skills improvement, although outcomes of serious games over traditional learning approaches were not consistent. In addition, serious games appeared to be more engaging and satisfying for students, which could be considered as the most important positive impact. Conclusion: Serious games provide an option for healthcare and dental education but remain under-utilised and researched. At best, they offer a similar experience to other methods in relation to educational outcome; however, they can provide a supplementary strategy to engage students and improve learner satisfaction

    Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of large pores in the blood-tumor barrier (BTB) of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state <it>in vivo </it>a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed <it>in vivo </it>the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site.</p> <p>Methods</p> <p>Generation 5 (G5) through generation 8 (G8) polyamidoamine dendrimers were labeled with gadolinium (Gd)-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized <it>in vitro </it>by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5) the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized <it>in vivo </it>over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps.</p> <p>Results</p> <p>The estimated diameters of Gd-G7 dendrimers were 11 ± 1 nm and those of Gd-G8 dendrimers were 13 ± 1 nm. The BTB of ectopic RG-2 gliomas was more permeable than the BTB of orthotopic RG-2 gliomas to all Gd-dendrimer generations except for Gd-G8. The BTB of both ectopic RG-2 gliomas and orthotopic RG-2 gliomas was not permeable to Gd-G8 dendrimers.</p> <p>Conclusion</p> <p>The physiologic upper limit of pore size in the BTB of malignant solid tumor microvasculature is approximately 12 nanometers. In the physiologic state <it>in vivo </it>the luminal fibrous glycocalyx of the BTB of malignant brain tumor and peripheral tumors is the primary impediment to the effective transvascular transport of particles across the BTB of malignant solid tumor microvasculature independent of tumor host site. The higher permeability of malignant peripheral tumor microvasculature to macromolecules smaller than approximately 12 nm in diameter is attributable to the presence of a greater number of pores underlying the glycocalyx of the BTB of malignant peripheral tumor microvasculature.</p

    GABAA Receptor-Mediated Acceleration of Aging-Associated Memory Decline in APP/PS1 Mice and Its Pharmacological Treatment by Picrotoxin

    Get PDF
    Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9–15 months) transgenic APP/PS1 mice and old (19–25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABAA receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABAA receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABAA receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABAA receptor α1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABAA receptor α1 subunit and improvement of cognitive functions by long term GABAA receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABAA receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Aβ and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice

    Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice

    Get PDF
    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics

    Development and evaluation of real time RT-PCR assays for detection and typing of Bluetongue virus

    Get PDF
    Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple ‘TaqMan’ fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the ‘Orbivirus Reference Collection’ (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures

    Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    Get PDF
    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled

    Game Developers' Approaches to Communicating Climate Change

    Get PDF
    Educational games are potential tools for communicating climate science to the public and thus improving public understanding of climate change. In this article we explore the use of co-design methodologies, a participatory open design process, to communicate climate change to a wider audience. To this end, we hosted Climate Jam 2018, a game jam with the objective of creating games to communicate climate change science and to gain insight into how developers approach educational game design. The inclusive event attracted professional game developers and hobbyists from four continents. Participants received a science pack with scientific information about climate change and completed a pre- and post-game-jam survey containing questions relating to climate change, motivations, and game design principles. We present a description of select games that highlight different approaches to communicating climate change to a general audience. Additional results from the surveys showed that few game developers engaged with the science pack and other resources in depth, that communicating climate science was of medium interest to game developers, and that the games’ potential learning effects relate mostly to memorizing and recalling the information communicated in the games. The results are discussed with respect to improving communication between scientists and game developers in the co-creation process

    Second Language Processing Shows Increased Native-Like Neural Responses after Months of No Exposure

    Get PDF
    Although learning a second language (L2) as an adult is notoriously difficult, research has shown that adults can indeed attain native language-like brain processing and high proficiency levels. However, it is important to then retain what has been attained, even in the absence of continued exposure to the L2—particularly since periods of minimal or no L2 exposure are common. This event-related potential (ERP) study of an artificial language tested performance and neural processing following a substantial period of no exposure. Adults learned to speak and comprehend the artificial language to high proficiency with either explicit, classroom-like, or implicit, immersion-like training, and then underwent several months of no exposure to the language. Surprisingly, proficiency did not decrease during this delay. Instead, it remained unchanged, and there was an increase in native-like neural processing of syntax, as evidenced by several ERP changes—including earlier, more reliable, and more left-lateralized anterior negativities, and more robust P600s, in response to word-order violations. Moreover, both the explicitly and implicitly trained groups showed increased native-like ERP patterns over the delay, indicating that such changes can hold independently of L2 training type. The results demonstrate that substantial periods with no L2 exposure are not necessarily detrimental. Rather, benefits may ensue from such periods of time even when there is no L2 exposure. Interestingly, both before and after the delay the implicitly trained group showed more native-like processing than the explicitly trained group, indicating that type of training also affects the attainment of native-like processing in the brain. Overall, the findings may be largely explained by a combination of forgetting and consolidation in declarative and procedural memory, on which L2 grammar learning appears to depend. The study has a range of implications, and suggests a research program with potentially important consequences for second language acquisition and related fields
    corecore