675 research outputs found

    Eruption of kimberlite magmas: physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth (the Upper Pleistocene/ Holocene Igwisi Hills volcanoes, Tanzania)

    Get PDF
    The Igwisi Hills volcanoes (IHV), Tanzania, are unique and important in preserving extra-crater lavas and pyroclastic edifices. They provide critical insights into the eruptive behaviour of kimberlite magmas that are not available at other known kimberlite volcanoes. Cosmogenic 3He dating of olivine crystals from IHV lavas and palaeomagnetic analyses indicates that they are Upper Pleistocene to Holocene in age. This makes them the youngest known kimberlite bodies on Earth by >30 Ma and may indicate a new phase of kimberlite volcanism on the Tanzania craton. Geological mapping, Global Positioning System surveying and field investigations reveal that each volcano comprises partially eroded pyroclastic edifices, craters and lavas. The volcanoes stand 102 to 106 Pa s) for kimberlite, attributed to degassing and in-vent cooling. Each volcano is inferred to be the result of a small-volume, short-lived (days to weeks) monogenetic eruption. The eruptive processes of each Igwisi volcano were broadly similar and developed through three phases: (1) fallout of lithic-bearing pyroclastic rocks during explosive excavation of craters and conduits; (2) fallout of juvenile lapilli from unsteady eruption columns and the construction of pyroclastic edifices around the vent; and (3) effusion of degassed viscous magma as lava flows. These processes are similar to those observed for other small-volume monogenetic eruptions (e.g. of basaltic magma)

    Evolution in the Cluster Early-type Galaxy Size-Surface Brightness Relation at z =~ 1

    Full text link
    We investigate the evolution in the distribution of surface brightness, as a function of size, for elliptical and S0 galaxies in the two clusters RDCS J1252.9-2927, z=1.237 and RX J0152.7-1357, z=0.837. We use multi-color imaging with the Advanced Camera for Surveys on the Hubble Space Telescope to determine these sizes and surface brightnesses. Using three different estimates of the surface brightnesses, we find that we reliably estimate the surface brightness for the galaxies in our sample with a scatter of < 0.2 mag and with systematic shifts of \lesssim 0.05 mag. We construct samples of galaxies with early-type morphologies in both clusters. For each cluster, we use a magnitude limit in a band which closely corresponds to the rest-frame B, to magnitude limit of M_B = -18.8 at z=0, and select only those galaxies within the color-magnitude sequence of the cluster or by using our spectroscopic redshifts. We measure evolution in the rest-frame B surface brightness, and find -1.41 \+/- 0.14 mag from the Coma cluster of galaxies for RDCS J1252.9-2927 and -0.90 \+/- 0.12 mag of evolution for RX J0152.7-1357, or an average evolution of (-1.13 \+/- 0.15) z mag. Our statistical errors are dominated by the observed scatter in the size-surface brightness relation, sigma = 0.42 \+/- 0.05 mag for RX J0152.7-1357 and sigma = 0.76 \+/- 0.10 mag for RDCS J1252.9-2927. We find no statistically significant evolution in this scatter, though an increase in the scatter could be expected. Overall, the pace of luminosity evolution we measure agrees with that of the Fundamental Plane of early-type galaxies, implying that the majority of massive early-type galaxies observed at z =~ 1 formed at high redshifts.Comment: Accepted in ApJ, 16 pages in emulateapj format with 15 eps figures, 6 in colo

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Nutritional intakes of highly trained adolescent swimmers before, during, and after a national lockdown in the COVID-19 pandemic

    Get PDF
    Strict lockdown measures were introduced in response to the COVID-19 pandemic, which caused mass disruption to adolescent swimmers' daily routines. To measure how lockdown impacted nutritional practices in this cohort, three-day photograph food diaries were analysed at three time points: before (January), during (April), and after (September) the first UK lockdown. Thirteen swimmers (aged 15 ± 1 years) from a high-performance swimming club submitted satisfactory food diaries at all time points. During lockdown, lower amounts of energy (45.3 ± 9.8 vs. 31.1 ± 7.7 kcal·kg BM·day-1, p0.05), despite fewer training hours being completed (15.0 ± 1.4 vs. 19.1 ± 2.2 h.week-1, p<0.001). These findings highlight the ability of adolescent swimmers to alter their nutrition based on their changing training circumstances when receiving sport nutrition support. However, some individuals displayed signs of suboptimal nutrition during lockdown that were not corrected once training resumed. This warrants future research to develop interactive education workshops that maintain focus and motivation towards optimal nutrition practices in isolated periods away from training

    The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study

    Get PDF
    Background: Current evidence suggests sodium bicarbonate (NaHCO3) should be ingested based upon the individualised alkalotic peak of either blood pH or bicarbonate (HCO3−) because of large inter-individual variations (10–180 min). If such a strategy is to be practical, the blood analyte response needs to be reproducible. Objective: This study aimed to evaluate the degree of reproducibility of both time to peak (TTP) and absolute change in blood pH, HCO3− and sodium (Na+) following acute NaHCO3 ingestion. Methods: Male participants (n = 15) with backgrounds in rugby, football or sprinting completed six randomised treatments entailing ingestion of two doses of 0.2 g·kg−1 body mass (BM) NaHCO3 (SBC2a and b), two doses of 0.3 g·kg−1 BM NaHCO3 (SBC3a and b) or two control treatments (CON1a and b) on separate days. Blood analysis included pH, HCO3− and Na+ prior to and at regular time points following NaHCO3 ingestion over a 3-h period. Results: HCO3− displayed greater reproducibility than pH in intraclass correlation coefficient (ICC) analysis for both TTP (HCO3− SBC2 r = 0.77, P = 0.003; SBC3 r = 0.94, P < 0.001; pH SBC2 r = 0.62, P = 0.044; SBC3 r = 0.71, P = 0.016) and absolute change (HCO3− SBC2 r = 0.89, P < 0.001; SBC3 r = 0.76, P = 0.008; pH SBC2 r = 0.84, P = 0.001; SBC3 r = 0.62, P = 0.041). Conclusion: Our results indicate that both TTP and absolute change in HCO3− is more reliable than pH. As such, these data provide support for an individualised NaHCO3 ingestion strategy to consistently elicit peak alkalosis before exercise. Future work should utilise an individualised NaHCO3 ingestion strategy based on HCO3− responses and evaluate effects on exercise performance

    The reduction of intoxication and disorder in premises licensed to serve alcohol: An exploratory randomised controlled trial

    Get PDF
    Background: Licensed premises offer a valuable point of intervention to reduce alcohol-related harm. Objective: To describe the research design for an exploratory trial examining the feasibility and acceptability of a premises-level intervention designed to reduce severe intoxication and related disorder. The study also aims to assess the feasibility of a potential future large scale effectiveness trial and provide information on key trial design parameters including inclusion criteria, premises recruitment methods, strategies to implement the intervention and trial design, outcome measures, data collection methods and intra-cluster correlations. Design: A randomised controlled trial in licensed premises that had experienced at least one assault in the year preceding the intervention, documented in police or hospital Emergency Department (ED) records. Premises were recruited from four study areas by piloting four recruitment strategies of varying intensity. Thirty two licensed premises were grouped into matched pairs to reduce potential bias and randomly allocated to the control or intervention condition. The study included a nested process evaluation to provide information on intervention acceptability and implementation. Outcome measures included police-recorded violent incidents, assault-related attendances at each premises' local ED and patron Breath Alcohol Concentration assessed on exiting and entering study premises. Results: The most successful recruitment method involved local police licensing officers and yielded a 100% success rate. Police-records of violence provided the most appropriate source of data about disorder at the premises level. Conclusion: The methodology of an exploratory trial is presented and despite challenges presented by the study environment it is argued an exploratory trial is warranted. Initial investigations in recruitment methods suggest that study premises should be recruited with the assistance of police officers. Police data were of sufficient quality to identify disorder and street surveys are a feasible method for measuring intoxication at the individual level

    Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus

    Get PDF
    A major challenge in computational neurobiology is to understand how populations of noisy, broadly-tuned neurons produce accurate goal-directed actions such as saccades. Saccades are high-velocity eye movements that have stereotyped, nonlinear kinematics; their duration increases with amplitude, while peak eye-velocity saturates for large saccades. Recent theories suggest that these characteristics reflect a deliberate strategy that optimizes a speed-accuracy tradeoff in the presence of signal-dependent noise in the neural control signals. Here we argue that the midbrain superior colliculus (SC), a key sensorimotor interface that contains a topographically-organized map of saccade vectors, is in an ideal position to implement such an optimization principle. Most models attribute the nonlinear saccade kinematics to saturation in the brainstem pulse generator downstream from the SC. However, there is little data to support this assumption. We now present new neurophysiological evidence for an alternative scheme, which proposes that these properties reside in the spatial-temporal dynamics of SC activity. As predicted by this scheme, we found a remarkably systematic organization in the burst properties of saccade-related neurons along the rostral-to-caudal (i.e., amplitude-coding) dimension of the SC motor map: peak firing-rates systematically decrease for cells encoding larger saccades, while burst durations and skewness increase, suggesting that this spatial gradient underlies the increase in duration and skewness of the eye velocity profiles with amplitude. We also show that all neurons in the recruited population synchronize their burst profiles, indicating that the burst-timing of each cell is determined by the planned saccade vector in which it participates, rather than by its anatomical location. Together with the observation that saccade-related SC cells indeed show signal-dependent noise, this precisely tuned organization of SC burst activity strongly supports the notion of an optimal motor-control principle embedded in the SC motor map as it fully accounts for the straight trajectories and kinematic nonlinearity of saccades

    Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows

    Get PDF
    © 2014, Springer-Verlag Berlin Heidelberg. We present the results of laboratory experiments on the behaviour of sustained, dense granular flows in a horizontal flume, in which high-gas pore pressure was maintained throughout the flow duration by continuous injection of gas through the flume base. The flows were fed by a sustained (0.5–30 s) supply of fine (75 ± 15 μm) particles from a hopper; the falling particles impacted an impingement surface at concentrations of ~3 to 45 %, where they densified rapidly to generate horizontally moving, dense granular flows. When the gas supplied through the flume base was below the minimum fluidization velocity of the particles (i.e. aerated flow conditions), three flow phases were identified: (i) an initial dilute spray of particles travelling at 1–2 m s−1, followed by (ii) a dense granular flow travelling at 0.5–1 m s−1, then by (iii) sustained aggradation of the deposit by a prolonged succession of thin flow pulses. The maximum runout of the phase 2 flow was linearly dependent on the initial mass flux, and the frontal velocity had a square-root dependence on mass flux. The frontal propagation speed during phase 3 had a linear relationship with mass flux. The total mass of particles released had no significant control on either flow velocity or runout in any of the phases. High-frequency flow unsteadiness during phase 3 generated deposit architectures with progradational and retrogradational packages and multiple internal erosive contacts. When the gas supplied through the flume base was equal to the minimum fluidization velocity of the particles (i.e. fluidized flow conditions), the flows remained within phase 2 for their entire runout, no deposit formed and the particles ran off the end of the flume. Sustained granular flows differ significantly from instantaneous flows generated by lock-exchange mechanisms, in that the sustained flows generate (by prolonged progressive aggradation) deposits that are much thicker than the flowing layer of particles at any given moment. The experiments offer a first attempt to investigate the physics of the sustained pyroclastic flows that generate thick, voluminous ignimbrites

    Activation of superior colliculi in humans during visual exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual, oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. Evidence for corresponding functions of the SC in humans is still rare. We examined activity changes in the human tectum and the lateral geniculate nuclei (LGN) in a visual search task using functional magnetic resonance imaging (fMRI) and anatomically defined regions of interest (ROI). Healthy subjects conducted a free visual search task and two voluntary eye movement tasks with and without irrelevant visual distracters. Blood oxygen level dependent (BOLD) signals in the SC were compared to activity in the inferior colliculi (IC) and LGN.</p> <p>Results</p> <p>Neural activity increased during free exploration only in the SC in comparison to both control tasks. Saccade frequency did not exert a significant effect on BOLD signal changes. No corresponding differences between experimental tasks were found in the IC or the LGN. However, while the IC revealed no signal increase from the baseline, BOLD signal changes at the LGN were consistently positive in all experimental conditions.</p> <p>Conclusion</p> <p>Our data demonstrate the involvement of the SC in a visual search task. In contrast to the results of previous studies, signal changes could not be seen to be driven by either visual stimulation or oculomotor control on their own. Further, we can exclude the influence of any nearby neural structures (e.g. pulvinar, tegmentum) or of typical artefacts at the brainstem on the observed signal changes at the SC. Corresponding to findings in non-human primates, our data support a dependency of SC activity on functions beyond oculomotor control and visual processing.</p
    • …
    corecore