850 research outputs found

    Seasonal Movements and Habitat Use of Juvenile Smooth Hammerhead Sharks in the Western North Atlantic Ocean and Significance for Management

    Get PDF
    Upper trophic level predators dramatically impacted by fisheries include the large-bodied hammerhead sharks, which have become species of conservation concern worldwide. Implementing spatial management for conservation of hammerhead populations requires knowledge of temporal distribution patterns and habitat use, identification of essential habitat for protection, and quantification of interactions with human activities. There is little such information for the smooth hammerhead shark, Sphyrna zygaena. We used fin-mounted satellite tags to examine the movements and habitat use of juvenile smooth hammerheads, a demographic segment particularly threatened by exploitation. Six sharks were tagged off the US mid-Atlantic and tracked for 49–441 days (mean 187 ± 136 days). Sharks consistently showed area-restricted movements within a summer core area in waters of the New York Bight and a winter core area off Cape Hatteras, North Carolina, with directed movements between them in autumn. There was high overlap of shark winter core area use and the Mid-Atlantic Shark Area (MASA) – a 7 month per year, bottom-longline fishery closure – indicating that this area closure offers seasonal reduction in fishing pressure for this species. Based on timing of shark movements and the MASA closure, protection for juvenile smooth hammerheads may be increased by beginning the closure period 1 month earlier than currently scheduled. Generalized additive mixed models revealed that area-restricted movements of sharks in their summer and winter core areas coincided with high primary productivity, and elevated sea surface temperature. Consistency in use of summer and winter core areas suggests that the coastal waters of the New York Bight and Cape Hatteras, North Carolina could be considered for Essential Fish Habitat designation for this species. This study reveals the first high resolution movements and habitat use for smooth hammerheads in the western North Atlantic to inform management planning for this population

    Seasonal Movements and Habitat Use of Juvenile Smooth Hammerhead Sharks in the Western North Atlantic Ocean and Significance for Management

    Get PDF
    Upper trophic level predators dramatically impacted by fisheries include the large-bodied hammerhead sharks, which have become species of conservation concern worldwide. Implementing spatial management for conservation of hammerhead populations requires knowledge of temporal distribution patterns and habitat use, identification of essential habitat for protection, and quantification of interactions with human activities. There is little such information for the smooth hammerhead shark, Sphyrna zygaena. We used fin-mounted satellite tags to examine the movements and habitat use of juvenile smooth hammerheads, a demographic segment particularly threatened by exploitation. Six sharks were tagged off the US mid-Atlantic and tracked for 49–441 days (mean 187 ± 136 days). Sharks consistently showed area-restricted movements within a summer core area in waters of the New York Bight and a winter core area off Cape Hatteras, North Carolina, with directed movements between them in autumn. There was high overlap of shark winter core area use and the Mid-Atlantic Shark Area (MASA) – a 7 month per year, bottom-longline fishery closure – indicating that this area closure offers seasonal reduction in fishing pressure for this species. Based on timing of shark movements and the MASA closure, protection for juvenile smooth hammerheads may be increased by beginning the closure period 1 month earlier than currently scheduled. Generalized additive mixed models revealed that area-restricted movements of sharks in their summer and winter core areas coincided with high primary productivity, and elevated sea surface temperature. Consistency in use of summer and winter core areas suggests that the coastal waters of the New York Bight and Cape Hatteras, North Carolina could be considered for Essential Fish Habitat designation for this species. This study reveals the first high resolution movements and habitat use for smooth hammerheads in the western North Atlantic to inform management planning for this population

    DNA barcoding identifies a cosmopolitan diet in the ocean sunfish

    No full text
    The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions

    Ontogenetic Partial Migration Is Associated with Environmental Drivers and Influences Fisheries Interactions in a Marine Predator

    Get PDF
    The ability to predict animal movement based on environmental change is essential for understanding the dynamic nature of their spatial ecology, and in turn the effectiveness of conservation strategies. We used a large marine predator that displays partial migration (the tiger shark Galeocerdo cuvier) as a model to test the role of oceanic conditions in predicting the space-use of different size classes. By using generalized additive mixed models (GAMMs), we revealed that environmental variables (sea surface temperature, primary productivity, thermal fronts, and bathymetry) had much greater predictive power for the movements of large, migratory tiger sharks than for small, resident individuals. We also found that coverage of tiger shark movements within “shark sanctuaries” (protected areas specifically for sharks) in the northwest Atlantic could be increased from 12 to 52% through inclusion of Bermuda’s waters. However, as large tiger sharks are migratory, over 80% of potential longline fisheries interactions would still occur outside the boundaries of even the expanded protected areas. This emphasises that management of highly migratory species needs to be dynamic and account for changing interactions with fisheries over time, which in a changing climate may rely on predicting movements based on oceanic conditions to be effective

    Phylogenomics and Morphological Reconstruction of Arcellinida Testate Amoebae Highlight Diversity of Microbial Eukaryotes in the Neoproterozoic

    Get PDF
    Life was microbial for the majority of Earth's history, but as very few microbial lineages leave a fossil record, the Precambrian evolution of life remains shrouded in mystery. Shelled (testate) amoebae stand out as an exception with rich documented diversity in the Neoproterozoic as vase-shaped microfossils (VSMs). While there is general consensus that most of these can be attributed to the Arcellinida lineage in Amoebozoa, it is still unclear whether they can be used as key fossils for interpretation of early eukaryotic evolution. Here, we present a well-resolved phylogenomic reconstruction based on 250 genes, obtained using single-cell transcriptomic techniques from a representative selection of 19 Arcellinid testate amoeba taxa. The robust phylogenetic framework enables deeper interpretations of evolution in this lineage and demanded an updated classification of the group. Additionally, we performed reconstruction of ancestral morphologies, yielding hypothetical ancestors remarkably similar to existing Neoproterozoic VSMs. We demonstrate that major lineages of testate amoebae were already diversified before the Sturtian glaciation (720 mya), supporting the hypothesis that massive eukaryotic diversification took place in the early Neoproterozoic and congruent with the interpretation that VSM are arcellinid testate amoebae

    A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development

    Get PDF
    While gene expression dynamics have been extensively cataloged during hematopoietic differentiation in the adult, less is known about transcriptome diversity of human hematopoietic stem cells (HSCs) during development. To characterize transcriptional and post-transcriptional changes in HSCs during development, we leveraged high-throughput genomic approaches to profile miRNAs, lincRNAs, and mRNAs. Our findings indicate that HSCs manifest distinct alternative splicing patterns in key hematopoietic regulators. Detailed analysis of the splicing dynamics and function of one such regulator, HMGA2, identified an alternative isoform that escapes miRNA-mediated targeting. We further identified the splicing kinase CLK3 that, by regulating HMGA2 splicing, preserves HMGA2 function in the setting of an increase in let-7 miRNA levels, delineating how CLK3 and HMGA2 form a functional axis that influences HSC properties during development. Collectively, our study highlights molecular mechanisms by which alternative splicing and miRNA-mediated post-transcriptional regulation impact the molecular identity and stage-specific developmental features of human HSCs. Human hematopoietic stem cells (HSCs) display substantial transcriptional diversity during development. Here, we investigated the contribution of alternative splicing to such diversity by analyzing the dynamics of a key hematopoietic regulator, HMGA2. Next, we showed that CLK3, by regulating the splicing pattern of HMGA2, reinforces an HSC-specific program

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    Integrated monitoring of mola mola behaviour in space and time

    Get PDF
    Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of finescale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) videorecorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (r(s) = 0.184, p < 0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's finescale behaviour observed over a two weeks in May 2014
    corecore