25 research outputs found

    HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6

    Get PDF
    The innate immune response constitutes the first line of defense against infections. Pattern recognition receptors recognize pathogen structures and trigger intracellular signaling pathways leading to cytokine and chemokine expression. Reactive oxygen species (ROS) are emerging as an important regulator of some of these pathways. ROS directly interact with signaling components or induce other post-translational modifications such as S-glutathionylation, thereby altering target function. Applying live microscopy, we have demonstrated that herpes simplex virus (HSV) infection induces early production of ROS that are required for the activation of NF-κB and IRF-3 pathways and the production of type I IFNs and ISGs. All the known receptors involved in the recognition of HSV were shown to be dependent on the cellular redox levels for successful signaling. In addition, we provide biochemical evidence suggesting S-glutathionylation of TRAF family proteins to be important. In particular, by performing mutational studies we show that S-glutathionylation of a conserved cysteine residue of TRAF3 and TRAF6 is important for ROS-dependent activation of innate immune pathways. In conclusion, these findings demonstrate that ROS are essential for effective activation of signaling pathways leading to a successful innate immune response against HSV infection

    Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression

    Get PDF
    The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS

    Binding of Kaposi's Sarcoma-Associated Herpesvirus K-bZIP to Interferon-Responsive Factor 3 Elements Modulates Antiviral Gene Expressionâ–¿

    No full text
    Kaposi's sarcoma-associated herpesvirus encodes numerous regulatory proteins capable of modulating viral and cellular gene expression and affecting host cell functions. K-bZIP, a leucine zipper-containing transcription factor encoded by ORFK8, is one such protein. During infection, transcription of the ORFK8 early gene is turned on by the immediate-early replication and transcription factor activator (RTA). One described function of the K-bZIP nuclear protein is to interact with and repress RTA-mediated transactivation of viral promoters, including that of the K8 gene. In the present work, we provide evidence that the expression of K-bZIP results in the activation of the ifn-β gene. Of interest, ifn-β gene activation by K-bZIP is independent of interferon (IFN)-responsive factor 3 (IRF-3) and nuclear factor κB (NF-κB) activation. Using a DNA binding affinity assay and electromobility shift assay, we report that K-bZIP binds efficiently to the PRDIII-I region of the beta IFN (IFN-β) promoter, and, in doing so, it prevents the attachment of activated IRF-3 but not that of NF-κB or ATF2/c-Jun to the IFN-β promoter sequence. As a consequence, ifn-β gene activation in response to IFN inducers such as Sendai virus infection or expression of retinoic acid-inducible gene I, mitochondrial antiviral signaling protein, or TANK-binding kinase 1 (TBK-1) is severely impaired (>90%) by the presence of K-bZIP. K-bZIP also prevents the activation of RANTES and CXCL11, whose promoters are also regulated by IRF-3. Lysine 158 (target for SUMO conjugation), threonine 111, and serine 167 (targets for phosphorylation) mutants of K-bZIP were equally effective as wild-type K-bZIP in mediating the repression of TBK-1-activated ifn-β gene expression. Lastly, the overexpression of CREB binding protein could not reverse the K-bZIP repression of TBK-1-activated ifn-β gene expression. In all, our results indicate that K-bZIP binds directly to the PRDIII-I region of the IFN-β promoter and, as a consequence, causes a low level of ifn-β gene transcription. In doing so, K-bZIP prevents IRF-3 from binding to the IFN-β promoter and precludes the formation of the enhanceosome, which is required for maximal ifn-β gene transcription. A new role for K-bZIP as a protein involved in immune evasion is therefore uncovered

    Adenovirus Type 5 Rupture of Lysosomes Leads to Cathepsin B-Dependent Mitochondrial Stress and Production of Reactive Oxygen Species â–¿

    No full text
    In response to viral infection, reactive oxygen species (ROS) mediate innate immune signaling or generate danger signals to activate immune cells. The mechanisms of virally induced ROS are poorly defined, however. We demonstrate that ROS are produced within minutes of adenovirus type 5 (Ad5) infection of macrophages and that oxidative stress supports Ad5-induced cytokine secretion. We show that short hairpin RNA (shRNA) knockdown of TLR9 has no effect on ROS production despite observed decreases in Ad-induced cytokine secretion. A major source of ROS in macrophages is NADPH oxidase. However, shRNA knockdown of the NADPH oxidase subunit NOX2 does not attenuate Ad-induced ROS. Induction of ROS is not observed in cells infected with a temperature-sensitive mutant of Ad2, ts1, which is defective in endosomal membrane penetration during cell entry. Further, Ad5, but not ts1, induces the release of lysosomal cathepsin B into the cytoplasm of infected cells. In agreement with this finding, we observe a loss of mitochondrial membrane potential upon Ad infection which requires Ad endosomal membrane penetration and cathepsin B activity. Overexpression of Bcl-2 attenuates Ad5-induced ROS, further supporting the role for mitochondrial membrane destabilization as the source of ROS in response to Ad5 infection. Together, these data suggest that ROS produced in response to Ad5 infection depends on the virally induced endosomal membrane rupture to release lysosomal cathepsins. Furthermore, the release of cathepsins leads to mitochondrial membrane disruption and thus the release of ROS from the mitochondria
    corecore