139 research outputs found

    High temperature magnetic stabilization of cobalt nanoparticles by an antiferromagnetic proximity effect

    Get PDF
    Thermal activation tends to destroy the magnetic stability of small magnetic nanoparticles, with crucial implications in ultra-high density recording among other applications. Here we demonstrate that low blocking temperature ferromagnetic (FM) Co nanoparticles (TB<70 K) become magnetically stable above 400 K when embedded in a high N\'eel temperature antiferromagnetic (AFM) NiO matrix. The origin of this remarkable TB enhancement is due to a magnetic proximity effect between a thin CoO shell (with low N\'eel temperature, TN; and high anisotropy, KAFM) surrounding the Co nanoparticles and the NiO matrix (with high TN but low KAFM). This proximity effect yields an effective AFM with an apparent TN beyond that of bulk CoO, and an enhanced anisotropy compared to NiO. In turn, the Co core FM moment is stabilized against thermal fluctuations via core-shell exchange-bias coupling, leading to the observed TB increase. Mean-field calculations provide a semi-quantitative understanding of this magnetic- proximity stabilization mechanism

    Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix

    Full text link
    Exchange biased composites of ferromagnetic single-domain Ni nanoparticles embedded within large grains of MnO have been prepared by reduction of Nix_xMn1x_{1-x}O4_4 phases in flowing hydrogen. The Ni precipitates are 15-30 nm in extent, and the majority are completely encased within the MnO matrix. The manner in which the Ni nanoparticles are spontaneously formed imparts a high ferromagnetic- antiferromagnetic interface/volume ratio, which results in substantial exchange bias effects. Exchange bias fields of up to 100 Oe are observed, in cases where the starting Ni content xx in the precursor Nix_xMn1x_{1-x}O4_4 phase is small. For particles of approximately the same size, the exchange bias leads to significant hardening of the magnetization, with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure

    Magnetic relaxation of exchange biased (Pt/Co) multilayers studied by time-resolved Kerr microscopy

    Get PDF
    Magnetization relaxation of exchange biased (Pt/Co)5/Pt/IrMn multilayers with perpendicular anisotropy was investigated by time-resolved Kerr microscopy. Magnetization reversal occurs by nucleation and domain wall propagation for both descending and ascending applied fields, but a much larger nucleation density is observed for the descending branch, where the field is applied antiparallel to the exchange bias field direction. These results can be explained by taking into account the presence of local inhomogeneities of the exchange bias field.Comment: To appear in Physical Review B (October 2005

    Fundamentals of interface phenomena in advanced bulk nanoscale materials

    Get PDF
    The review is devoted to a study of interface phenomena influencing advanced properties of nanoscale materials processed by means of severe plastic deformation, high-energy ball milling and their combinations. Interface phenomena include processes of interface defect structure relaxation from a highly nonequilibrium state to an equilibrium condition, grain boundary phase transformations and enhanced grain boundary and triple junction diffusivity. On the basis of an experimental investigation, a theoretical description of the key interfacial phenomena controlling the functional properties of advanced bulk nanoscale materials has been conducted. An interface defect structure investigation has been performed by TEM, high-resolution x-ray diffraction, atomic simulation and modeling. The problem of a transition from highly non-equilibrium state to an equilibrium one, which seems to be responsible for low thermostability of nanoscale materials, was studied. Also enhanced grain boundary diffusivity is addressed. Structure recovery and dislocation emission from grain boundaries in nanocrystalline materials have been investigated by analytical methods and modeling

    Out-of-plane magnetic patterning on austenitic stainless steels using plasma nitriding

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.A correlation between the grain orientation and the out-of-plane magnetic properties of nitrogen-enriched polycrystalline austenitic stainless steel surface is performed. Due to the competition between the magnetocrystalline anisotropy, the exchange and dipolar interactions, and the residual stresses induced by nitriding, the resulting effective magnetic easy-axis can lay along unusual directions. It is also demonstrated that, by choosing an appropriate stainless steel texturing, arrays of ferromagnetic structures with out-of-plane magnetization, embedded in a paramagnetic matrix, can be produced by local plasma nitriding through shadow masks

    Spontaneously formed porous and composite materials

    Get PDF
    In recent years, a number of routes to porous materials have been developed which do not involve the use of pre-formed templates or structure-directing agents. These routes are usually spontaneous, meaning they are thermodynamically downhill. Kinetic control, deriving from slow diffusion of certain species in the solid state, allows metastable porous morphologies rather than dense materials to be obtained. While the porous structures so formed are random, the average architectural features can be well-defined, and the porosity is usually highly interconnected. The routes are applicable to a broad range of functional inorganic materials. Consequently, the porous architectures have uses in energy transduction and storage, chemical sensing, catalysis, and photoelectrochemistry. This is in addition to more straightforward uses deriving from the pore structure, such as in filtration, as a structural material, or as a cell-growth scaffold. In this feature article, some of the methods for the creation of porous materials are described, including shape-conserving routes that lead to hierarchical macro/mesoporous architectures. In some of the preparations, the resulting mesopores are aligned locally with certain crystallographic directions. The coupling between morphology and crystallography provides a macroscopic handle on nanoscale structure. Extension of these routes to create biphasic composite materials are also described

    Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation

    Get PDF
    Spherical iron oxide nanocomposite particles composed of magnetite and wustite have been successfully synthesized using a novel method of pulsed laser irradiation in ethyl acetate. Both the size and the composition of nanocomposite particles are controlled by laser irradiation condition. Through tuning the laser fluence, the Fe3O4/FeO phase ratio can be precisely controlled, and the magnetic properties of final products can also be regulated. This work presents a successful example of the fabrication of ferro (ferri) (FM)/antiferromagnetic (AFM) systems with high chemical stability. The results show this novel simple method as widely extendable to various FM/AFM nanocomposite systems
    corecore