Exchange biased composites of ferromagnetic single-domain Ni nanoparticles
embedded within large grains of MnO have been prepared by reduction of
NixMn1−xO4 phases in flowing hydrogen. The Ni precipitates are 15-30
nm in extent, and the majority are completely encased within the MnO matrix.
The manner in which the Ni nanoparticles are spontaneously formed imparts a
high ferromagnetic- antiferromagnetic interface/volume ratio, which results in
substantial exchange bias effects. Exchange bias fields of up to 100 Oe are
observed, in cases where the starting Ni content x in the precursor
NixMn1−xO4 phase is small. For particles of approximately the same
size, the exchange bias leads to significant hardening of the magnetization,
with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure