research

Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix

Abstract

Exchange biased composites of ferromagnetic single-domain Ni nanoparticles embedded within large grains of MnO have been prepared by reduction of Nix_xMn1x_{1-x}O4_4 phases in flowing hydrogen. The Ni precipitates are 15-30 nm in extent, and the majority are completely encased within the MnO matrix. The manner in which the Ni nanoparticles are spontaneously formed imparts a high ferromagnetic- antiferromagnetic interface/volume ratio, which results in substantial exchange bias effects. Exchange bias fields of up to 100 Oe are observed, in cases where the starting Ni content xx in the precursor Nix_xMn1x_{1-x}O4_4 phase is small. For particles of approximately the same size, the exchange bias leads to significant hardening of the magnetization, with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 11/12/2019