30 research outputs found

    Gene expression imputation across multiple brain regions provides insights into schizophrenia risk

    Get PDF
    Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression

    Evidence for Increased Genetic Risk Load for Major Depression in Patients Assigned to Electroconvulsive Therapy

    Get PDF
    Electroconvulsive therapy (ECT) is the treatment of choice for severe and treatment-resistant depression; disorder severity and unfavorable treatment outcomes are shown to be influenced by an increased genetic burden for major depression (MD). Here, we tested whether ECT assignment and response/nonresponse are associated with an increased genetic burden for major depression (MD) using polygenic risk score (PRS), which summarize the contribution of diseaserelated common risk variants. Fifty-one psychiatric inpatients suffering from a major depressive episode underwent ECT. MD-PRS were calculated for these inpatients and a separate population-based sample (n = 3,547 healthy; n = 426 self-reported depression) based on summary statistics from the Psychiatric Genomics Consortium MDD-working group (Cases: n = 59,851; Controls: n = 113,154). MD-PRS explained a significant proportion of disease status between ECT patients and healthy controls (p = .022, R2 = 1.173%); patients showed higher MD-PRS. MD-PRS in population-based depression self-reporters were intermediate between ECT patients and controls (n.s.). Significant associations between MD-PRS and ECT response (50% reduction in Hamilton depression rating scale scores) were not observed. Our findings indicate that ECT cohorts show an increased genetic burden for MD and are consistent with the hypothesis that treatment-resistant MD patients represent a subgroup with an increased genetic risk for MD. Larger samples are needed to better substantiate these findings

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Abstract Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk
    corecore