645 research outputs found
A design perspective on thermal barrier coatings
This technical paper addresses the challenges for maximizing the benefit of thermal barrier coatings for turbine engine applications. The perspective is from a customer's viewpoint, a turbine airfoil designer, who is continuously challenged to increase the turbine inlet temperature capability for new products while maintaining cooling flow levels or even reducing them. This is a fundamental requirement to achieve increased engine thrust levels. Developing advanced material systems for the turbine flowpath airfoils is one approach to solve this challenge, for example, high temperature nickel based superalloys or thermal barrier coatings to insulate the metal airfoil from the hot flowpath environment. The second approach is to increase the cooling performance of the turbine airfoil, which enables increased flowpath temperatures and reduced cooling flow levels. Thermal barrier coatings have been employed in jet engine applications for almost 30 years. The initial application was on augmenter lines to provide thermal protection during afterburner operation. However, the production use of thermal barrier coating in the turbine section has only occurred in the past 15 years. The application was limited to stationary parts, and only recently incorporated on the rotating turbine blades. This lack of endorsement of thermal barrier coatings resulted from the poor initial durability of these coatings in high heat flux environments. Significant improvements have been made to enhance spallation resistance and erosion resistance which has resulted in increased reliability of these coatings in turbine applications
Attentive Learning of Sequential Handwriting Movements: A Neural Network Model
Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
Analysis of finger motion coordination during packaging interactions
Packaging accessibility is a significant problem for many older people. Whilst the majority of studies have focused on issues surrounding strength, work has shown that dexterity required to open a pack is also a major issue for many older people.
Hence, the work undertaken here, reports a quantitative study that aimed to analyse motion coordination patterns across digits 2–5 (index to little finger) during interactions with three of the most common types of packaging: plastic bottles, jars, and crisps packets, and comparing those interactions to a common measure of dexterity, the Perdue Pegboard. Ten subjects (6 males and 4 females) were examined while reaching
forward to grasp and open a 300ml plastic bottle and a 500g jar. A ten-camera opto-electronic motion capture system measured trajectories of 25 miniature reflective
markers placed on the dorsal surface landmarks of the hand. Joint angular profiles for 12 involved flexion–extension movements were derived from the measured coordinates of
surface markers.
The results showed that finger correlations vary widely across the differing pack formats with the crisps having the lowest finger movement correlation and the jar having the highest. Speed and jerk metrics were also seen to vary across the various pack formats.
However, finger correlations were seen to be more relevant to perceived dexterity of pack opening than finger speeds and jerk motions
Posture of the arm when grasping spheres to place them elsewhere
Despite the infinitely many ways to grasp a spherical object, regularities have been observed in the posture of the arm and the grasp orientation. In the present study, we set out to determine the factors that predict the grasp orientation and the final joint angles of reach-tograsp movements. Subjects made reach-to-grasp movements toward a sphere to pick it up and place it at an indicated location. We varied the position of the sphere and the starting and placing positions. Multiple regression analysis showed that the sphere's azimuth from the subject was the best predictor of grasp orientation, although there were also smaller but reliable contributions of distance, starting position, and perhaps even placing position. The sphere's initial distance from the subject was the best predictor of the final elbow angle and shoulder elevation. A combination of the sphere's azimuth and distance from the subject was required to predict shoulder angle, trunkhead rotation, and lateral head position. The starting position best predicted the final wrist angle and sagittal head position. We conclude that the final posture of the arm when grasping a sphere to place it elsewhere is determined to a larger extend by the initial position of the object than by effects of starting and placing position. © 2010 Springer-Verlag
Perception of limb orientation in the vertical plane depends on center of mass rather than inertial eigenvectors
We performed two experiments to test the hypothesis that the perception of limb orientation depends on inertial eigenvectors (
A synergy-based hand control is encoded in human motor cortical areas
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses
Avoiding moving obstacles
To successfully move our hand to a target, we must consider how to get there without hitting surrounding objects. In a dynamic environment this involves being able to respond quickly when our relationship with surrounding objects changes. People adjust their hand movements with a latency of about 120 ms when the visually perceived position of their hand or of the target suddenly changes. It is not known whether people can react as quickly when the position of an obstacle changes. Here we show that quick responses of the hand to changes in obstacle position are possible, but that these responses are direct reactions to the motion in the surrounding. True adjustments to the changed position of the obstacle appeared at much longer latencies (about 200 ms). This is even so when the possible change is predictable. Apparently, our brain uses certain information exceptionally quickly for guiding our movements, at the expense of not always responding adequately. For reaching a target that changes position, one must at some time move in the same direction as the target did. For avoiding obstacles that change position, moving in the same direction as the obstacle is not always an adequate response, not only because it may be easier to avoid the obstacle by moving the other way, but also because one wants to hit the target after passing the obstacle. Perhaps subjects nevertheless quickly respond in the direction of motion because this helps avoid collisions when pressed for time. © 2008 Springer-Verlag
Somatosensory Comparison during Haptic Tracing
Active sensing involves memory retrieval and updating as well as mechanisms that trigger corrections to the ongoing exploratory movement. The present study examined this process in a task where human subjects moved the index fingertip clockwise around the circumference of a virtual sphere created by a robotic device. The fingertip pressed into the sphere during the movement, and the subjects were to report slight differences in sphere size (or surface curvature), which occurred from trial to trial. During each 2- to 3-s trial, subjects gradually adjusted their speed and pressure according to the current surface curvature, achieving a consistent level of contact force in the last half of the exploration. The results demonstrate that subjects were gradually accumulating haptic information about curvature and, at the same time, gradually changing the motor commands for the movement. When subjects encountered an unexpected transition in curvature (from circular to flat), they reacted by abruptly decreasing contact force at a latency of about 50 ms. This short latency indicates that spinally mediated corrections are engaged during this task. The results support the hypothesis that during haptic exploration, the neural comparison between expected and actual somatosensory feedback takes places at multiple levels, including the spinal cord
- …
