42 research outputs found

    The cucumovirus 2b gene drives selection of inter-viral recombinants affecting the crossover site, the acceptor RNA and the rate of selection

    Get PDF
    RNA–RNA recombination is an important pathway in virus evolution and has been described for many viruses. However, the factors driving recombination or promoting the selection of recombinants are still unclear. Here, we show that the small movement protein (2b) was able to promote selection of RNA 1/2–RNA 3 recombinants within a chimeric virus having RNAs 1 and 2 from cucumber mosaic virus, and RNA 3 from the related tomato aspermy virus, along with heterologous 2b genes. The source of the 2b also determined the selection of the acceptor RNA and the crossover site, as well as affecting the rate of selection of the recombinant RNAs. The nature of the RNA 3 also influenced the selection of the recombinant RNAs. A 163-nt tandem repeat in RNA 3 significantly affected the rate of selection of the recombinant RNA, while a single nucleotide within the repeat affected the crossover site. The recombination occurred in a non-random manner, involved no intermediates and probably was generated via a copy-choice mechanism during (+) strand RNA synthesis

    Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco

    Get PDF
    The cucumber mosaic virus (CMV) 2b protein not only inhibits anti-viral RNA silencing but also quenches transcriptional responses of plant genes to jasmonic acid, a key signalling molecule in defence against insects. This suggested that it might affect interactions between infected plants and aphids, insects that transmit CMV. We found that infection of tobacco with a 2b gene deletion mutant (CMVD2b) induced strong resistance to aphids (Myzus persicae) while CMV infection fostered aphid survival. Using electrical penetration graph methodology we found that higher proportions of aphids showed sustained phloem ingestion on CMV-infected plants than on CMVD2b-infected or mock-inoculated plants although this did not increase the rate of growth of individual aphids. This indicates that while CMV infection or certain viral gene products might elicit aphid resistance, the 2b protein normally counteracts this during a wild-type CMV infection. Our findings suggest that the 2b protein could indirectly affect aphid-mediated virus transmission

    The product of a Petrine circle? A reassessment of the origin and character of 1 Peter

    Get PDF
    © 2002 SAGE PublicationsRecent studies of 1 Peter, especially by John Elliott, have sought to rescue the letter from its assimilation to the Pauline tradition and to establish the view, now widely held, that 1 Peter is the distinctive product of a Petrine circle. After examining the traditions in 1 Peter, both Pauline and non-Pauline, and the names in the letter (Silvanus, Mark and Peter), this essay argues that there is no substantial evidence, either inside or outside the letter, to support the view of 1 Peter as originating from a specifically Petrine group. It is much more plausibly seen as reflecting the consolidation of early Christian traditions in Roman Christianity. Despite the scholarly majority currently in its favour, the view of 1 Peter as the distinctive product of a Petrine tradition from a Petrine circle should therefore be rejected

    Host range, symptom expression and RNA 3 sequence analyses of six Australian strains of Cucumber mosaic virus

    Get PDF
    We have characterised six Australian Cucumber mosaic virus (CMV) strains belonging to different subgroups, determined by the sequence of their complete RNA 3 and by their host range and the symptoms they cause on species in the Solanaceae, Cucurbitaceae and on sweet corn. These data allowed classification of strains into the known three CMV subgroups and identification of plant species able to differentiate the Australian strains by symptoms and host range. Western Australian strains 237 and Twa and Queensland strains 207 and 242 are closely related members of CMV subgroup IA, which cause similar severe symptoms on Nicotiana species. Strains 207 and 237 (subgroup IA) were the only strains tested which systemically infected sweet corn. Strain 243 caused the most severe symptoms of all strains on Nicotiana species, tomato and capsicum and appears to be the first confirmed subgroup IB strain reported in Australia. Based on pair-wise distance analysis and phylogeny of RNA 3, as well as mild disease symptoms on Nicotiana species, CMV 241 was assigned to subgroup II, as the previously described Q-CMV and LY-CMV

    Identification of viruses infecting cucurbits and determination of genetic diversity of Cucumber mosaic virus in Lorestan province, Iran

    No full text
    Various viral pathogens infect Cucurbitaceae and cause economic losses. Th e aim of the present study was to detect plant viral pathogens including Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV), Zucchini yellow mosaic virus (ZYMV), Cucurbit yellow stunting disorder virus (CYSDV) and Cucurbit chlorotic yellows virus (CCYV) in Lorestan province, in western Iran, and also to determine CMV genetic diversity in Iranian populations. A total of 569 symptomatic leaf samples were collected in 2013 and 2014 from cucurbits growing regions in Lorestan province. Th e collected samples were assessed for viral diseases by ELISA. Th e results showed virus incidences in most regions. Th en, the infection of 40 samples to CMV was confi rmed by RT-PCR. Moreover, to distinguish between the two groups (I and II) of CMV, PCR products were digested by two restriction enzymes XhoI and EcoRI. Results of the digestion showed that the isolates of Lorestan belonged to group I. Th e CMV-coat protein gene of eight isolates from diff erent regions and hosts was sequenced and phylogenetic analysis was performed. Subsequent analyses showed even more genetic variation among Lorestan isolates. Th e phylogenetic tree revealed that Lorestan province isolates belonged to two IA and IB subgroups and could be classifi ed together with East Azerbaijan province isolates. Th e results of the present study indicate a wide distribution of CMV, ZYMV, CGMMV, CYSDV and CCYV viruses in cucurbits fi elds of Lorestan province and for the fi rst time subgroup IB of CMV was reported on melon from Iran
    corecore