12,465 research outputs found

    Quantum Melting of the Charge Density Wave State in 1T-TiSe2

    Get PDF
    We report a Raman scattering study of low-temperature, pressure-induced melting of the CDW phase of 1T-TiSe2. Our Raman scattering measurements reveal that the collapse of the CDW state occurs in three stages: (i) For P<5 kbar, the pressure dependence of the CDW amplitude mode energies and intensities are indicative of a ``crystalline'' CDW regime; (ii) for 5 < P < 25 kbar, there is a decrease in the CDW amplitude mode energies and intensities with increasing pressure that suggests a regime in which the CDW softens, and may decouple from the lattice; and (iii) for P>25 kbar, the absence of amplitude modes reveals a melted CDW regime.Comment: 5 pages, 4 figure

    Autonomous Attitude Determination System (AADS). Volume 1: System description

    Get PDF
    Information necessary to understand the Autonomous Attitude Determination System (AADS) is presented. Topics include AADS requirements, program structure, algorithms, and system generation and execution

    Automatic Synonym Discovery with Knowledge Bases

    Full text link
    Recognizing entity synonyms from text has become a crucial task in many entity-leveraging applications. However, discovering entity synonyms from domain-specific text corpora (e.g., news articles, scientific papers) is rather challenging. Current systems take an entity name string as input to find out other names that are synonymous, ignoring the fact that often times a name string can refer to multiple entities (e.g., "apple" could refer to both Apple Inc and the fruit apple). Moreover, most existing methods require training data manually created by domain experts to construct supervised-learning systems. In this paper, we study the problem of automatic synonym discovery with knowledge bases, that is, identifying synonyms for knowledge base entities in a given domain-specific corpus. The manually-curated synonyms for each entity stored in a knowledge base not only form a set of name strings to disambiguate the meaning for each other, but also can serve as "distant" supervision to help determine important features for the task. We propose a novel framework, called DPE, to integrate two kinds of mutually-complementing signals for synonym discovery, i.e., distributional features based on corpus-level statistics and textual patterns based on local contexts. In particular, DPE jointly optimizes the two kinds of signals in conjunction with distant supervision, so that they can mutually enhance each other in the training stage. At the inference stage, both signals will be utilized to discover synonyms for the given entities. Experimental results prove the effectiveness of the proposed framework

    Summary of the Very Large Hadron Collider Physics and Detector Workshop

    Get PDF
    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV

    Measurement of serum haptoglobin as an indicator of the efficacy of malaria intervention trials

    Get PDF
    Serum haptoglobin levels were measured by an enzyme-linked immunosorbent assay in Gambian children who participated in 3 malaria intervention trials with untreated or impregnated bed nets. In one study, in which a significant effect on clinical malaria was observed, the mean serum haptoglobin level was significantly higher in the intervention than in the control group. In the other 2 studies, in which no significant protection was observed, mean haptoglobin levels were similar in intervention and control groups. Measurement of serum haptoglobin may provide a useful indirect measure of the effectiveness of malaria control programme

    The laurentian record of neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Vally, California

    Get PDF
    Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and glacial deposits that have been used to assess the severity of putative Snowball Earth events and the biological response to extreme environmental change. These successions also contain evidence for syn-sedimentary faulting that has been related to the rifting of Rodinia, and in turn the tectonic context of the onset of Snowball Earth. These interpretations hinge on local geological relationships and both regional and global stratigraphic correlations. Here we present new geological mapping, measured stratigraphic sections, carbon and strontium isotope chemostratigraphy, and micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death Valley. These new data enable us to refine regional correlations both across Death Valley and throughout Laurentia, and construct a new age model for glaciogenic strata and microfossil assemblages. Particularly, our remapping of the Kingston Peak Formation in the Saddle Peak Hills and near the type locality shows for the first time that glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in southeastern Death Valley, and that beds containing vase-shaped microfossils are slump blocks derived from the underlying strata. These slump blocks are associated with multiple overlapping unconformities that developed during syn-sedimentary faulting, which is a common feature of Cyrogenian strata along the margin of Laurentia from California to Alaska. With these data, we conclude that all of the microfossils that have been described to date in Neoproterozoic strata of Death Valley predate the glaciations and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth events

    Low-frequency Current Fluctuations in Individual Semiconducting Single-Wall Carbon Nanotubes

    Get PDF
    We present a systematic study on low-frequency current fluctuations of nano-devices consisting of one single semiconducting nanotube, which exhibit significant 1/f-type noise. By examining devices with different switching mechanisms, carrier types (electrons vs. holes), and channel lengths, we show that the 1/f fluctuation level in semiconducting nanotubes is correlated to the total number of transport carriers present in the system. However, the 1/f noise level per carrier is not larger than that of most bulk conventional semiconductors, e.g. Si. The pronounced noise level observed in nanotube devices simply reflects on the small number of carriers involved in transport. These results not only provide the basis to quantify the noise behavior in a one-dimensional transport system, but also suggest a valuable way to characterize low-dimensional nanostructures based on the 1/f fluctuation phenomenon
    corecore