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Quantum Melting of the Charge-Density-Wave State in 1T-TiSe2

C. S. Snow, J. F. Karpus, S. L. Cooper, T. E. Kidd,* and T.-C. Chiang
Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign,

Urbana, Illinois 61801, USA
(Received 8 April 2003; published 24 September 2003)

We report a Raman scattering study of low-temperature, pressure-induced melting of the charge-
density-wave (CDW) phase of 1T-TiSe2. Our measurements reveal that the collapse of the CDW state
occurs in three stages: (i) For P< 5 kbar, the pressure dependence of the CDWamplitude mode energies
and intensities are indicative of a ‘‘crystalline’’ CDW regime; (ii) for 5< P< 25 kbar, there is a
decrease in the CDW amplitude mode energies and intensities with increasing pressure that suggests a
regime in which the CDW softens, and exhibits enhanced fluctuations; and (iii) for P > 25 kbar, the
absence of amplitude modes reveals a metallic regime in which the CDW has melted.

DOI: 10.1103/PhysRevLett.91.136402 PACS numbers: 71.30.+h, 71.45.Lr, 78.30.–j

There has been a great deal of interest in the relation-
ship between various diverse and exotic low-temperature
phases of strongly correlated systems, including the
antiferromagnetic insulating and unconventional super-
conducting phases of the high Tc cuprates [1], the charge-
ordered insulating and ferromagnetic metal phases of the
manganites [2], the orbital-ordered and ferromagnetic
metal phases of the ruthenates [3–5], and the charge-
density-wave (CDW) and superconducting phases of
layered dichalcogenides such as 2H-NbSe2 [6]. Of par-
ticular interest is the exotic phase behavior that is ex-
pected between fully ordered (crystalline) and disordered
(isotropic) phases as one tunes the interactions in these
systems using some control parameter other than tem-
perature. These include electronically phase-separated
regimes [2], and ‘‘quantum liquid crystal’’ phases, which
are expected to be observed between charge-ordered in-
sulating and ‘‘disordered’’ metallic or superconducting
phases as one increases the interactions between the
charge stripes [7]. Clearly, therefore, it is of great interest
to carefully explore the manner in which 2D and 3D
quantum ordered phases collapse, or ‘‘melt,’’ into quan-
tum disordered phases as a function of some control
parameter — such as pressure — that tunes the competing
interactions in the material at low temperatures.

In this Letter, we report a pressure-dependent low-
temperature Raman scattering study of the CDW sys-
tem 1T-TiSe2, in which we are able to explore the manner
in which a quasi-2D CDW state melts with increasing
pressure near T � 0 K. Because of its layered structure
and simple commensurate CDW phase, 1T-TiSe2 is an
ideal system for such an investigation. 1T-TiSe2 is also of
interest because the CDW transition is not driven by con-
ventional Fermi surface nesting, but rather by an uncon-
ventional mechanism involving electron-hole coupling
and an ‘‘indirect’’ Jahn-Teller effect [8]. Our pressure-
dependent light scattering approach allows us to explore
unique details associated with quantum mechanical melt-
ing of the CDW in 1T-TiSe2. In particular, this study
reveals that the CDW state evolves with increasing pres-

sure in a manner reminiscent of classical 2D melting,
with crystalline and disordered CDW regimes, as well as
an intermediate ‘‘soft’’ CDW regime in which the CDW
exhibits strong fluctuations and loses its stiffness.

The 1T-TiSe2 samples used in this study were grown
by iodine vapor transport with a temperature gradient of
570–640 �C [8]. The sample stoichiometry was verified
by x-ray and resistivity measurements. The Raman spec-
tra were taken in a true backscattering geometry with
647.1 nm incident photons. Variable low-temperature,
high-pressure measurements were obtained with a modi-
fied SiC-anvil cell inserted into a flow-through helium
cryostat, allowing continuous adjustment of both the
temperature (3.5–300 K) and pressure (0–100 kbar) [5].
Argon was used as the pressure transmitting medium, and
the pressure inside the cell was determined from the shift
of the ruby fluorescence line; argon is quasihydrostatic in
the temperature and pressure range of interest [9].

Figure 1 shows the temperature-dependent Raman scat-
tering spectrum below the CDW transition temperature
at TC � 200 K. Several new modes develop in the CDW
phase. Of particular interest are an Eg mode near
75 cm�1 and an A1g mode near 115 cm�1. These two
modes are CDW-coupled ‘‘amplitude’’ modes associated
with the zone-boundary transverse acoustic phonons
from the L point in the Brillouin zone, which are folded
to the zone center due to the formation of the CDW super-
lattice [10,11]. That these two modes are indeed coupled
to the CDW mode is confirmed by their temperature de-
pendence in Fig. 2: Both the 75 cm�1 Eg and 115 cm�1

A1g amplitude mode energies soften dramatically as the
temperature is increased toward the CDW transition tem-
perature. By contrast, the 134 cm�1 Eg and 203 cm�1 A1g
zone-center optical phonon energies are nearly tempera-
ture independent, indicating that they are not strongly
influenced by the development of the CDW state.

The CDW amplitude modes are excitations of the
CDW ground state, involving fluctuations of the CDW
state that modulate the amplitude of the charge-density
wave. In particular, the A1g amplitude mode near
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115 cm�1 involves fluctuations of the CDW amplitude
that preserve the symmetry of the CDW ground state
(Fig. 1 inset), while the Eg amplitude mode involves
out-of-phase fluctuations of the CDW amplitude away
from the ground state symmetry. These two amplitude
modes serve as ideal ‘‘probes’’ with which to study the
stability and stiffness of the CDW state as it evolves and
melts as a function of increasing pressure.

Figure 3 shows the pressure-dependent Raman spectra
of TiSe2 at 3.5 K. The energy and intensity of the
115 cm�1 A1g and 75 cm�1 Eg CDW amplitude modes,
along with both the 134 cm�1 Eg and 203 cm�1 A1g opti-
cal phonon modes, are summarized in Fig. 4. One of the
chief effects of pressure on the low-temperature Raman
spectrum of 1T-TiSe2 is the gradual suppression of the 75
and 115 cm�1 CDW amplitude mode intensities with
increasing pressure, and the complete collapse of the
CDWstate near a T � 0 critical pressure of approximately
P� � 25 kbar. Notably, the dramatic increase in the A1g
optical phonon linewidth near P� � 25 kbar [Fig. 3(c)
inset] betrays increased damping of this phonon by free
carriers, indicative of a pressure-induced CDW-metal
transition near P�. This value of the critical pressure is
similar to that observed in pressure-induced CDW-
to-metal transitions in NbSe3 (P� � 24 kbar) [12] and
Lu5Ir4Si10 (P� � 21 kbar) [13].

More interesting than the pressure-induced collapse of
the CDW phase is the manner in which this collapse

occurs. This process can be carefully studied by examin-
ing the energies and intensities of the 75 cm�1 Eg and
115 cm�1 A1g amplitude modes as a function of pressure,
summarized in Figs. 4(c) and 4(d), respectively. For com-
parison, Fig. 4 also summarizes the pressure-dependent
energies of both the (a) 203 cm�1 optical phonon and
(b) 134 cm�1 optical phonon modes.

Notably, Fig. 4 reveals several regimes of behavior
associated with the pressure-induced (T � 0) quantum
melting of the CDW state in 1T-TiSe2:

(i) Crystalline CDW regime.—From P � 0 to 5 kbar,
the A1g CDW amplitude mode’s intensity decreases
slightly, but its energy increases at a rate of approximately
d!o=dP��1 cm�1=kbar. This behavior is consis-
tent with increased stiffening of the CDW state with
increased pressure, indicative of a ‘‘crystalline’’ regime.
Significantly, the manner in which the A1g amplitude
mode energy increases with pressure is similar to that
of the 203 cm�1 [Fig. 4(a)] and 134 cm�1 [Fig. 4(b)]
optical modes, providing evidence that the CDW remains
commensurate with the lattice in this regime.

(ii) Soft CDW regime.—Between roughly P� 5 to
25 kbar, the A1g amplitude mode exhibits a number of
interesting and anomalous changes as a function of in-
creasing pressure: its energy softens—revealing an
anomalous, slightly negative Grüneisen mode parameter
d!o=dP in this regime [14] — its intensity decreases rap-
idly, and its linewidth increases substantially [Fig. 3(c)
inset]. By contrast, neither the 134 cm�1 Eg nor the
203 cm�1 A1g optical phonon modes show an appreciable

FIG. 2. Temperature dependence of the peak energies of
(a) the A1g optical mode, (b) the Eg optical mode, (c) the
A1g CDW mode, and (d) the Eg CDW mode.

FIG. 1. Temperature dependent Raman scattering spectra of
TiSe2. The inset shows the displacement pattern associated
with the CDW distortion, for Ti atoms (solid circles), Se atoms
above a Ti layer (open circles), and Se atoms below a Ti layer
(shaded circles).
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change in either intensity or linewidth throughout this
pressure regime. The behavior of the A1g CDW mode in
this regime is consistent with a distinct softening of the
CDW state to breathing-mode fluctuations of the CDW
amplitude, and with an increase in CDW fluctuations near
P�. Equally interesting is the fact that the energy of the
A1g CDW amplitude mode exhibits a distinctly different
pressure dependence than the Eg or A1g optical phonon
modes in this regime, suggesting that the CDW becomes
incommensurate with the lattice [15,16]. Importantly, the
Eg amplitude mode also exhibits a particularly anoma-
lous pressure dependence in this regime, including a
decrease in energy and a rapid reduction in intensity
with increasing pressure. The rapid disappearance of the
Eg mode, in particular, indicates that out-of-phase fluc-
tuations of the CDW amplitude are not well-defined ex-
citations above roughly P� 5 kbar, even though there is
clearly some vestige of the A1g CDW mode at these
pressures. This may indicate a breakdown of long-range
CDW order in this phase regime; indeed, calculations of
1D CDW systems show that a softening of the CDW to
shear deformations, and a consequent breakdown of long-

range translational order, occurs when the coupling be-
tween CDW stripes reaches a critical value [17]. In sum,
the behavior of the CDW modes in the ‘‘soft CDW’’
regime is characteristic of a regime in which the CDW
has begun to soften, or melt, as well as exhibit increasing
CDW fluctuations.

(iii) Disordered CDW regime.—Finally, above roughly
P� � 25 kbar, both the Eg and A1g CDWamplitude modes
are completely suppressed; consequently, there is no evi-
dence in the spectra for long- or short-range CDW order,
indicating that the CDW state has melted completely into
a metallic or semimetallic phase.

It is interesting to compare the pressure-induced
‘‘melting’’ process described above for 1T-TiSe2 to melt-
ing in other 2D systems [18,19]. Calculations of classical
melting in 2D solids suggest the presence of a ‘‘hexatic’’
phase — in which long-range orientational order is pre-
served, but long-range translational order is lost — inter-
mediate between the crystalline and disordered phases.
This topological phase arises because dislocations cause
translational order to decay exponentially, but cause a
much weaker suppression of orientational order. Such a
hexatic-like phase has indeed been observed as a func-
tion of increasing disorder (x) in the layered NbxTa1�xS2

FIG. 4 (color). Pressure dependence of the peak energies
(circles) and normalized intensities, I�P�=I�P � 0� (squares)
at T � 3:5 K for (a) the A1g optical mode, (b) the Eg optical
mode, (c) the A1g CDW mode, and (d) the Eg CDW mode. The
hatched lines denote rough boundaries between crystalline
CDW, soft CDW, and disordered CDW regimes.

FIG. 3 (color). Pressure dependence of the Raman spectra of
TiSe2 at T � 3:5 K for (a) the Eg CDW mode, (b) the A1g CDW
and Eg optical phonon modes, and (c) the A1g optical phonon
mode (P � 0 spectrum not shown for clarity). The intense
mode near 143 cm�1 in (b) is an anvil phonon mode. The
inset shows the pressure dependence of the A1g optical phonon
(red circles) and A1g CDW mode (blue squares) linewidths
(FWHM).
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system using scanning-tunneling microscopy (STM):
these measurements reveal a system that is, in turn,
crystalline (0< x< 0:04), hexatic (0:04 	 x 	 0:07),
and amorphous (x > 0:07), as a function of increasing
disorder (x).

While classical melting in 2D systems is reminiscent
of the phase behavior we observe as a function of pressure
in 1T-TiSe2, an important qualification should be made
with respect to this comparison. In contrast to the ex-
amples above, the melting process we observe in
1T-TiSe2 is quantum mechanical in nature, in that it is
driven near T � 0 K by pressure tuning the competing
interactions in this system. To understand the nature of
this competition, note first that the zero-pressure CDW
state in 1T-TiSe2 is unconventional, arising from an in-
direct Jahn-Teller–type interaction that splits and lowers
the unoccupied conduction band [8]: as a result of the
electron-hole interaction between the conduction and va-
lence bands, the lowering of the split conduction band
‘‘repulses’’ and flattens the valence band, resulting in a
lowering of the system’s energy, and the formation of a
small gap CDW state. Upon applying pressure to this
CDW state, one expects several regimes of behavior: at
low applied pressures, increasing pressure will increase
the matrix element associated with the Jahn-Teller inter-
action; this is expected to result in a further lowering of
the conduction band, and via the electron-hole coupling,
to cause a lowering of the valence band and a consequent
stiffening of the CDW state. This behavior is similar to
that observed in the ‘‘crystalline CDW’’ regime of Fig. 4.
As the pressure is increased beyond a critical pressure,
however, the increasing strength of the Jahn-Teller inter-
action is expected to overwhelm the electron-hole inter-
action between the conduction and valence bands, leading
to a collapse of the CDW gap, and a pressure-induced
transition to a metallic phase in which the CDW distor-
tion is completely suppressed. Again, the dramatic in-
crease in the linewidth of the A1g optical phonon above P�

[Fig. 3(c) inset], as well as the disappearance of the CDW
mode intensities, is indicative of such a pressure-induced
metallic phase above P� in 1T-TiSe2. Most significantly,
our results indicate that, prior to the complete collapse of
the CDWgap above P� in 1T-TiSe2, there is a distinct soft
CDW phase regime in which the CDW loses its stiffness;
this appears to result from increased fluctuations of the
CDW near P�, likely caused by an increase in free car-
riers as the CDW gap collapses. In theoretical support of
this, Zaitsev-Zotov et al. have shown that increased cou-
pling between CDW stripes leads to an increase in dy-
namic fluctuations and a decreased CDW stiffness [17].
Interestingly, such long wavelength lattice fluctuations
are expected to destroy long-range translational order
but preserve long-range orientational order [20].

In summary, Raman scattering studies of T � 0
pressure-induced melting of the CDW state in 1T-TiSe2
reveal a low-pressure (P< 5 kbar) crystalline CDW re-

gime, a high-pressure (P > 25 kbar) metallic regime,
and an intermediate pressure regime (5<P< 25 kbar)
in which the CDW loses its stiffness, exhibits increased
fluctuations, and may have only short-range order. This
pressure-induced melting of the CDW state in 1T-TiSe2
is noticeably different from classical 3D melting, which
occurs via an abrupt first-order transition, and instead
appears to occur in a manner more akin to classical 2D
melting.
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