903 research outputs found

    Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting.

    Get PDF
    BACKGROUND: The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family. RESULTS: W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes. CONCLUSIONS: Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Extreme mobility of the world’s largest flying mammals creates key challenges for management and conservation

    Get PDF
    Effective conservation management of highly mobile species depends upon detailed knowledge of movements of individuals across their range; yet, data are rarely available at appropriate spatiotemporal scales. Flying-foxes (Pteropus spp.) are large bats that forage by night on floral resources and rest by day in arboreal roosts that may contain colonies of many thousands of individuals. They are the largest mammals capable of powered flight, and are highly mobile, which makes them key seed and pollen dispersers in forest ecosystems. However, their mobility also facilitates transmission of zoonotic diseases and brings them in conflict with humans, and so they require a precarious balancing of conservation and management concerns throughout their Old World range. Here, we analyze the Australia-wide movements of 201 satellite-tracked individuals, providing unprecedented detail on the inter-roost movements of three flying-fox species: Pteropus alecto, P. poliocephalus, and P. scapulatus across jurisdictions over up to 5 years

    The influence of crosswind tidal currents on Langmuir circulation in a shallow ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C08005, doi:10.1029/2011JC006971.Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that plays a key role in transferring momentum, heat, and mass in the oceanic surface layer. On the coastal shelves the largest-scale LC span the whole water column and thus couple the surface and bottom boundary layers and enhance turbulent mixing. Observations and large eddy simulations (LES) of a shallow coastal ocean demonstrate that these relatively large scale Langmuir cells are strongly influenced by crosswind tidal currents. Two mechanisms by which crosswind tidal shear may distort and disrupt Langmuir cells are proposed. The first mechanism involves cell shearing due to differential advection across the whole cell. For the second mechanism, middepth vertical LC currents advect sheared mean crosswind current, leading to the attraction of upwelling and downwelling regions, so that LC cells are unsustainable when both regions overlap. Scaling arguments indicate that LC cells are more susceptible to crosswind shear distortion for smaller LC surface velocity convergence and greater cell aspect ratio (vertical to horizontal LC scale), which is consistent with the results obtained from the observations and LES. These results imply that scaling of LC characteristics in a coastal ocean differs from that in the open ocean, which has important practical implications for parameterizing enhanced mixing due to LC.This research was supported by the Office of Naval Research through grant N00014‐06‐1‐0178 (A.P., J.T.). Author T.K. received support from Faculty Startup Funds of the University of Delaware College of Earth, Ocean, and Environment

    Scalar flux profile relationships over the open ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S09, doi:10.1029/2003JC001960.The most commonly used flux-profile relationships are based on Monin-Obukhov (MO) similarity theory. These flux-profile relationships are required in indirect methods such as the bulk aerodynamic, profile, and inertial dissipation methods to estimate the fluxes over the ocean. These relationships are almost exclusively derived from previous field experiments conducted over land. However, the use of overland measurements to infer surface fluxes over the ocean remains questionable, particularly close to the ocean surface where wave-induced forcing can affect the flow. This study investigates the flux profile relationships over the open ocean using measurements made during the 2000 Fluxes, Air-Sea Interaction, and Remote Sensing (FAIRS) and 2001 GasEx experiments. These experiments provide direct measurement of the atmospheric fluxes along with profiles of water vapor and temperature. The specific humidity data are used to determine parameterizations of the dimensionless gradients using functional forms of two commonly used relationships. The best fit to the Businger-Dyer relationship [ Businger, 1988 ] is found using an empirical constant of a q = 13.4 ± 1.7. The best fit to a formulation that has the correct form in the limit of local free convection [e.g., Wyngaard, 1973 ] is found using a q = 29.8 ± 4.6. These values are in good agreement with the consensus values from previous overland experiments and the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithm [ Fairall et al., 2003 ]; e.g., the COARE algorithm uses empirical constants of 15 and 34.2 for the Businger-Dyer and convective forms, respectively. Although the flux measurements were made at a single elevation and local similarity scaling is applied, the good agreement implies that MO similarity is valid within the marine atmospheric surface layer above the wave boundary layer.The FAIRS work was supported by the Office of Naval Research grant N00014-00-1-0403 while the GasEx work was supported by the National Science Foundation grant OCE-9986724

    Nonlocal transport due to Langmuir circulation in a coastal ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C12007, doi:10.1029/2012JC008340.We present observations and simulations of large-scale velocity structures associated with turbulent boundary layer dynamics of a coastal ocean. Special purpose acoustic Doppler current profiler measurements revealed that such structures were frequently present, in spite of complex coastal environmental conditions. Large eddy simulation results are only consistent with these observations if the Langmuir circulation (LC) effect due to wave-current interaction is included in the model. Thus, model results indicate that the observed large-scale velocity structures are due to LC. Based on these simulations, we examine the shift of energetics and transport from a local regime for purely shear-driven turbulence to a nonlocal regime for turbulence with LC due to coherent large-scale motions that span the whole water column. Without LC, turbulent kinetic energy (TKE) dissipation rates approximately balance TKE shear production, consistent with solid wall boundary layer turbulence. This stands in contrast to the LC case for which the vertical TKE transport plays a dominant role in the TKE balance. Conditional averages argue that large-scale LC coherent velocity structures extract only a small fraction of energy from the wavefield but receive most of their energy input from the Eulerian shear. The analysis of scalar fields and Lagrangian particles demonstrates that the vertical transport is significantly enhanced with LC but that small-scale mixing may be reduced. In the presence of LC, vertical scalar fluxes may be up gradient, violating a common assumption in oceanic boundary layer turbulence parameterizations.This work was supported by the U.S. National Science Foundation (Grant OCE-1130678). CBLAST-Low analysis was supported by the Office of Naval Research under grants N00014-03-1- 0681 and N00014-06-1-0178 to the Woods Hole Oceanographic Institution. Author T.K. received support from Faculty Startup Funds of the School of Marine Science and Policy, University of Delaware.2013-06-1

    Super sites for advancing understanding of the oceanic and atmospheric boundary layers

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clayson, C. A., Centurioni, L., Cronin, M. F., Edson, J., Gille, S., Muller-Karger, F., Parfitt, R., Riihimaki, L. D., Smith, S. R., Swart, S., Vandemark, D., Boas, A. B. V., Zappa, C. J., & Zhang, D. Super sites for advancing understanding of the oceanic and atmospheric boundary layers. Marine Technology Society Journal, 55(3), (2021): 144–145, https://doi.org/10.4031/MTSJ.55.3.11.Air‐sea interactions are critical to large-scale weather and climate predictions because of the ocean's ability to absorb excess atmospheric heat and carbon and regulate exchanges of momentum, water vapor, and other greenhouse gases. These exchanges are controlled by molecular, turbulent, and wave-driven processes in the atmospheric and oceanic boundary layers. Improved understanding and representation of these processes in models are key for increasing Earth system prediction skill, particularly for subseasonal to decadal time scales. Our understanding and ability to model these processes within this coupled system is presently inadequate due in large part to a lack of data: contemporaneous long-term observations from the top of the marine atmospheric boundary layer (MABL) to the base of the oceanic mixing layer. We propose the concept of “Super Sites” to provide multi-year suites of measurements at specific locations to simultaneously characterize physical and biogeochemical processes within the coupled boundary layers at high spatial and temporal resolution. Measurements will be made from floating platforms, buoys, towers, and autonomous vehicles, utilizing both in-situ and remote sensors. The engineering challenges and level of coordination, integration, and interoperability required to develop these coupled ocean‐atmosphere Super Sites place them in an “Ocean Shot” class.NOAA CVP TPOS, Understanding Processes Controlling Near-Surface Salinity in the Tropical Ocean Using Multiscale Coupled Modeling and Analysis, NA18OAR4310402 to CAC and JE. NSF Award PLR-1425989 and OPP-1936222, Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) to SG. NOAA, BOEM, ONR, NSF, NOPP, NASA Applied Sciences Office, Biodiversity & Ecological Forecasting Program; National Science Foundation (Co-PI J. Pearlman); OceanObs Research Coordination Network (OCE-1728913) to FM-K. NASA, SWOT program, Award # 80NSSC20K1136 to ABVB. NSF, Investigating the Air-Sea Energy Exchange in the presence of Surface Gravity Waves by Measurements of Turbulence Dissipation, Production and Transport, OCE 17-56839; NSF, A Multi-Spectral Thermal Infrared Imaging System for Air-Sea Interaction Research, OCE 20-23678; NSF, Investigating the Relationship Between Ocean Surface Gravity–Capillary Waves, Surface-Layer Hydrodynamics, and Air–Sea Momentum Flux, OCE 20-49579 to CJZ. Partially funded by NOAA/Climate Program Office and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 to DZ

    Androgen Receptor Inhibition Suppresses Anti-Tumor Neutrophil Response Against Bone Metastatic Prostate Cancer via Regulation of TÎČRI Expression

    Get PDF
    Bone metastatic disease of prostate cancer (PCa) is incurable and progression in bone is largely dictated by tumor-stromal interactions in the bone microenvironment. We showed previously that bone neutrophils initially inhibit bone metastatic PCa growth yet metastatic PCa becomes resistant to neutrophil response. Further, neutrophils isolated from tumor-bone lost their ability to suppress tumor growth through unknown mechanisms. With this study, our goal was to define the impact of metastatic PCa on neutrophil function throughout tumor progression and to determine the potential of neutrophils as predictive biomarkers of metastatic disease. Using patient peripheral blood polymorphonuclear neutrophils (PMNs), we identified that PCa progression dictates PMN cell surface markers and gene expression, but not cytotoxicity against PCa. Importantly, we also identified a novel phenomenon in which second generation androgen deprivation therapy (ADT) suppresses PMN cytotoxicity via increased transforming growth factor beta receptor I (TÎČRI). High dose testosterone and genetic or pharmacologic TÎČRI inhibition rescued androgen receptor-mediated neutrophil suppression and restored neutrophil anti-tumor immune response. These studies highlight the ability to leverage standard-care ADT to generate neutrophil anti-tumor responses against bone metastatic PCa

    Air-sea CO2 exchange in the equatorial Pacific

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S02, doi:10.1029/2003JC002256.GasEx-2001, a 15-day air-sea carbon dioxide (CO2) exchange study conducted in the equatorial Pacific, used a combination of ships, buoys, and drifters equipped with ocean and atmospheric sensors to assess variability and surface mechanisms controlling air-sea CO2 fluxes. Direct covariance and profile method air-sea CO2 fluxes were measured together with the surface ocean and marine boundary layer processes. The study took place in February 2001 near 125°W, 3°S in a region of high CO2. The diurnal variation in the air-sea CO2 difference was 2.5%, driven predominantly by temperature effects on surface solubility. The wind speed was 6.0 ± 1.3 m s−1, and the atmospheric boundary layer was unstable with conditions over the range −1 < z/L < 0. Diurnal heat fluxes generated daytime surface ocean stratification and subsequent large nighttime buoyancy fluxes. The average CO2 flux from the ocean to the atmosphere was determined to be 3.9 mol m−2 yr−1, with nighttime CO2 fluxes increasing by 40% over daytime values because of a strong nighttime increase in (vertical) convective velocities. The 15 days of air-sea flux measurements taken during GasEx-2001 demonstrate some of the systematic environmental trends of the eastern equatorial Pacific Ocean. The fact that other physical processes, in addition to wind, were observed to control the rate of CO2 transfer from the ocean to the atmosphere indicates that these processes need to be taken into account in local and global biogeochemical models. These local processes can vary on regional and global scales. The GasEx-2001 results show a weak wind dependence but a strong variability in processes governed by the diurnal heating cycle. This implies that any changes in the incident radiation, including atmospheric cloud dynamics, phytoplankton biomass, and surface ocean stratification may have significant feedbacks on the amount and variability of air-sea gas exchange. This is in sharp contrast with previous field studies of air-sea gas exchange, which showed that wind was the dominating forcing function. The results suggest that gas transfer parameterizations that rely solely on wind will be insufficient for regions with low to intermediate winds and strong insolation.This work was performed with the support of the National Science Foundation Grant OCE-9986724 and the NOAA Global Carbon Cycle Program Grants NA06GP048, NA17RJ1223, and NA87RJ0445 in the Office of Global Programs

    Sex Equity in Educational Leadership: The Oregon Story

    Get PDF
    81 pagesWe have some short-term evidence of success of the SEEL Project in Oregon. There are more women administrators and more women preparing to become administrators in 1979 than there were in 1976. We have helped to change some people's attitudes and expectations regarding women in administration and we have helped to change aspects of a few organizations to make hiring more equitable. We also tried to build a legacy for change so that Oregon will continue reform efforts upon completion of the SEEL Project. Although we report evidence of the SEEL Project's successes and failures in three years, its ultimate effectiveness in achieving equity can only be measured in the future.The Sex Equity in Educational Leadership Project (SEEL) was funded by the Women's Educational Equity Act Program, Office of Education, from 1976 to 1979 to test several strategies for increasing the number of women in public school administration in Oregon
    • 

    corecore