15 research outputs found

    Maternal hormonal milieu influence on fetal brain development

    Get PDF
    An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.This work was supported by the grant "Doutoramento em Medicina Jose de Mello Saude 2014" by Jose de Mello Saude to AM

    Sexually dimorphic effects of maternal alcohol intake and adrenalectomy on left ventricular hypertrophy in rat offspring

    No full text
    Copyright © 2003 by the American Physiological Society.In humans, low birth weight and increased placental weight can be associated with cardiovascular disease in adulthood. Low birth weight and increased placental size are known to occur after fetal alcohol exposure or prenatal glucocorticoid administration. Thus the effects of removing the alcohol-induced increase in maternal corticosterone by maternal adrenalectomy on predictors of cardiovascular disease in adulthood were examined in rats. Alcohol exposure of dams during the last 2 wk of gestation resulted in significantly decreased fetal weight and increased placental weight on gestational day 21. Adult female, but not male, offspring of alcohol-consuming mothers exhibited left ventricular hypertrophy. Placental 11 -hydroxysteroid dehydrogenase-2 (11 -HSD-2) mRNA levels, measured by Northern blot, were decreased in females but not males. Adrenalectomy of alcohol-consuming dams reversed the increase in placental weight and the decrease in female placental 11 -HSD-2 expression and eliminated the left ventricular hypertrophy of adult female offspring. These data suggest that alcohol-induced changes in placental 11 -HSD-2 mRNA levels and left ventricular weight are coupled in female offspring only and depend on maternal adrenal statusJennifer Slone Wilcoxon, Jeff Schwartz, Fraser Aird, and Eva E. Rede
    corecore