135 research outputs found

    Txe, an endoribonuclease of the enterococcal Axe–Txe toxin–antitoxin system, cleaves mRNA and inhibits protein synthesis

    Get PDF
    The axe–txe operon encodes a toxin–antitoxin (TA) pair, Axe–Txe, that was initially identified on the multidrug-resistance plasmid pRUM in Enterococcus faecium. In Escherichia coli, expression of the Txe toxin is known to inhibit cell growth, and co-expression of the antitoxin, Axe, counteracts the toxic effect of Txe. Here, we report the nucleotide sequence of pS177, a 39 kb multidrug-resistant plasmid isolated from vancomycin-resistant Ent. faecium, which harbours the axe–txe operon and the vanA gene cluster. RT-PCR analysis revealed that the axe–txe transcript is produced by strain S177 as well as by other vancomycin-resistant enteroccoci. Moreover, we determine the mechanism by which the Txe protein exerts its toxic activity. Txe inhibits protein synthesis in E. coli without affecting DNA or RNA synthesis, and inhibits protein synthesis in a cell-free system. Using in vivo primer extension analysis, we demonstrate that Txe preferentially cleaves single-stranded mRNA at the first base after an AUG start codon. We conclude that Txe is an endoribonuclease which cleaves mRNA and inhibits protein synthesis

    Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages

    Get PDF
    o determine the genetic composition of the first VanA-type plasmid (pIP816) reported, which was isolated from a clinical Enterococcus faecium (BM4147) strain in France in 1986, and to reveal the genetic units responsible for the dissemination of the vanA gene cluster by comparisons with current, published and additionally generated vanA-spanning plasmid sequences obtained from a heterogeneous E. faecium strain collection (n = 28).Plasmid sequences were produced by shotgun sequencing using ABI dye chemistry and primer walking, and were subsequently annotated. Comparative sequence analysis of the vanA region was done with published plasmids, with a partial vanA plasmid (pVEF4) reported here and to >140 kb of sequence obtained from a collection of vanA-harbouring plasmid fragments. Bioinformatic analyses revealed that pIP816 from 1986 and contemporary vanA plasmids shared a conserved genetic fragment of 25 kb, spanning the 10.85 kb vanA cluster encoded by Tn1546, and that the larger unit is present in both clinical and animal complexes of E. faecium. A new group II intron in pVEF4 was characterized. Comparative DNA analyses suggest that Tn1546 disseminates in and between clonal complexes of E. faecium as part of a larger genetic unit, possibly as a composite transposon flanked by IS1216 elements

    A multidisciplinary, multifactorial intervention program reduces postoperative falls and injuries after femoral neck fracture

    Get PDF
    INTRODUCTION: This study evaluates whether a postoperative multidisciplinary, intervention program, including systematic assessment and treatment of fall risk factors, active prevention, detection, and treatment of postoperative complications, could reduce inpatient falls and fall-related injuries after a femoral neck fracture. METHODS: A randomized, controlled trial at the orthopedic and geriatric departments at Umeå University Hospital, Sweden, included 199 patients with femoral neck fracture, aged  ≥70 years. RESULTS: Twelve patients fell 18 times in the intervention group compared with 26 patients suffering 60 falls in the control group. Only one patient with dementia fell in the intervention group compared with 11 in the control group. The crude postoperative fall incidence rate was 6.29/1,000 days in the intervention group vs 16.28/1,000 days in the control group. The incidence rate ratio was 0.38 [95% confidence interval (CI): 0.20 – 0.76, p = 0.006] for the total sample and 0.07 (95% CI: 0.01–0.57, p=0.013) among patients with dementia. There were no new fractures in the intervention group but four in the control group. CONCLUSION: A team applying comprehensive geriatric assessment and rehabilitation, including prevention, detection, and treatment of fall risk factors, can successfully prevent inpatient falls and injuries, even in patients with dementia

    A Novel Mechanism of Programmed Cell Death in Bacteria by Toxin–Antitoxin Systems Corrupts Peptidoglycan Synthesis

    Get PDF
    Most genomes of bacteria contain toxin–antitoxin (TA) systems. These gene systems encode a toxic protein and its cognate antitoxin. Upon antitoxin degradation, the toxin induces cell stasis or death. TA systems have been linked with numerous functions, including growth modulation, genome maintenance, and stress response. Members of the epsilon/zeta TA family are found throughout the genomes of pathogenic bacteria and were shown not only to stabilize resistance plasmids but also to promote virulence. The broad distribution of epsilon/zeta systems implies that zeta toxins utilize a ubiquitous bacteriotoxic mechanism. However, whereas all other TA families known to date poison macromolecules involved in translation or replication, the target of zeta toxins remained inscrutable. We used in vivo techniques such as microscropy and permeability assays to show that pneumococcal zeta toxin PezT impairs cell wall synthesis and triggers autolysis in Escherichia coli. Subsequently, we demonstrated in vitro that zeta toxins in general phosphorylate the ubiquitous peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG) and that this activity is counteracted by binding of antitoxin. After identification of the product we verified the kinase activity in vivo by analyzing metabolite extracts of cells poisoned by PezT using high pressure liquid chromatograpy (HPLC). We further show that phosphorylated UNAG inhibitis MurA, the enzyme catalyzing the initial step in bacterial peptidoglycan biosynthesis. Additionally, we provide what is to our knowledge the first crystal structure of a zeta toxin bound to its substrate. We show that zeta toxins are novel kinases that poison bacteria through global inhibition of peptidoglycan synthesis. This provides a fundamental understanding of how epsilon/zeta TA systems stabilize mobile genetic elements. Additionally, our results imply a mechanism that connects activity of zeta toxin PezT to virulence of pneumococcal infections. Finally, we discuss how phosphorylated UNAG likely poisons additional pathways of bacterial cell wall synthesis, making it an attractive lead compound for development of new antibiotics

    Precipitation drives global variation in natural selection

    Get PDF
    Climate change has the potential to affect the ecology and evolution of every species on Earth. Although the ecological consequences of climate change are increasingly well documented, the effects of climate on the key evolutionary process driving adaptation - natural selection - are largely unknown. We report that aspects of precipitation and potential evapotranspiration, along with the North Atlantic Oscillation, predicted variation in selection across plant and animal populations throughout many terrestrial biomes, whereas temperature explained little variation. By showing that selection was influenced by climate variation, our results indicate that climate change may cause widespread alterations in selection regimes, potentially shifting evolutionary trajectories at a global scale

    APOE ε4 lowers age at onset and is a high risk factor for Alzheimer's disease; A case control study from central Norway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to analyze factors influencing the risk and timing of Alzheimer's disease (AD) in central Norway. The <it>APOE </it>ε4 allele is the only consistently identified risk factor for late onset Alzheimer's disease (LOAD). We have described the allele frequencies of the apolipoprotein E gene (<it>APOE</it>) in a large population of patients with AD compared to the frequencies in a cognitively-normal control group, and estimated the effect of the <it>APOE </it>ε4 allele on the risk and the age at onset of AD in this population.</p> <p>Methods</p> <p>376 patients diagnosed with AD and 561 cognitively-normal control individuals with no known first degree relatives with dementia were genotyped for the <it>APOE </it>alleles. Allele frequencies and genotypes in patients and control individuals were compared. Odds Ratio for developing AD in different genotypes was calculated.</p> <p>Results</p> <p>Odds Ratio (OR) for developing AD was significantly increased in carriers of the <it>APOE </it>ε4 allele compared to individuals with the <it>APOE </it>ε3/ε3 genotype. Individuals carrying <it>APOE </it>ε4/ε4 had OR of 12.9 for developing AD, while carriers of <it>APOE </it>ε2/ε4 and <it>APOE </it>ε3/ε4 had OR of 3.2 and 4.2 respectively. The effect of the <it>APOE </it>ε4 allele was weaker with increasing age. Carrying the <it>APOE </it>ε2 allele showed no significant protective effect against AD and did not influence age at onset of the disease. Onset in LOAD patients was significantly reduced in a dose dependent manner from 78.4 years in patients without the <it>APOE </it>ε4 allele, to 75.3 in carriers of one <it>APOE </it>ε4 allele and 72.9 in carriers of two <it>APOE </it>ε4 alleles. Age at onset in early onset AD (EOAD) was not influenced by <it>APOE </it>ε4 alleles.</p> <p>Conclusion</p> <p><it>APOE </it>ε4 is a very strong risk factor for AD in the population of central Norway, and lowers age at onset of LOAD significantly.</p

    Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex

    Get PDF
    Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.UE FWF; P22260UE: Y66
    corecore