210 research outputs found

    Testing for ancient admixture between closely related populations.

    Get PDF
    Abstract One enduring question in evolutionary biology is the extent of archaic admixture in the genomes of present-day populations. In this paper, we present a test for ancient admixture that exploits the asymmetry in the frequencies of the two nonconcordant gene trees in a three-population tree. This test was first applied to detect interbreeding between Neandertals and modern humans. We derive the analytic expectation of a test statistic, called the D statistic, which is sensitive to asymmetry under alternative demographic scenarios. We show that the D statistic is insensitive to some demographic assumptions such as ancestral population sizes and requires only the assumption that the ancestral populations were randomly mating. An important aspect of D statistics is that they can be used to detect archaic admixture even when no archaic sample is available. We explore the effect of sequencing error on the false-positive rate of the test for admixture, and we show how to estimate the proportion of archaic ancestry in the genomes of present-day populations. We also investigate a model of subdivision in ancestral populations that can result in D statistics that indicate recent admixture

    Molecular techniques reveal cryptic life history and demographic processes of a critically endangered marine turtle

    Get PDF
    The concept of ‘effective population size’ (Ne), which quantifies how quickly a population will lose genetic variability, is one of the most important contributions of theoretical evolutionary biology to practical conservation management. Ne is often much lower than actual population size: how much so depends on key life history and demographic parameters, such as mating systems and population connectivity, that often remain unknown for species of conservation concern. Molecular techniques allow the indirect study of these parameters, as well as the estimation of current and historical Ne. Here, we use genotyping to assess the genetic health of an important population of the critically endangered hawksbill turtle (Eretmochelys imbricata), a slow-to-mature, difficult-to-observe species with a long history of severe overhunting. Our results were surprisingly positive: we found that the study population, located in the Republic of Seychelles, Indian Ocean, has a relatively large Ne, estimated to exceed 1000, and showed no evidence of a recent reduction in Ne (i.e. no genetic bottleneck). Furthermore, molecular inferences suggest the species' mating system is conducive to maintaining a large Ne, with a relatively large and widely distributed male population promoting considerable gene flow amongst nesting sites across the Seychelles area. This may also be reinforced by the movement of females between nesting sites. Our study underlines how molecular techniques can help to inform conservation biology. In this case our results suggest that this important hawksbill population is starting from a relatively strong position as it faces new challenges, such as global climate change

    Ancient human genomes suggest three ancestral populations for present-day Europeans

    Get PDF
    We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes1,2,3,4 with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians3, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations’ deep relationships and show that early European farmers had ∼44% ancestry from a ‘basal Eurasian’ population that split before the diversification of other non-African lineages.Instituto Multidisciplinario de Biología Celula

    Evolutionary Dynamics of Pandemic Methicillin-Sensitive Staphylococcus aureus ST398 and Its International Spread via Routes of Human Migration

    Get PDF
    Methicillin-susceptible Staphylococcus aureus (MSSA) accounts for the majority of S. aureus infections globally, and yet surprisingly little is known about its clonal evolution. We applied comparative whole-genome sequencing (WGS) analyses to epidemiologically and geographically diverse ST398-MSSA, a pandemic lineage affecting both humans and livestock. Bayesian phylogenetic analysis predicted divergence of human-associated ST398-MSSA ~40 years ago. Isolates from Midwestern pigs and veterinarians differed substantially from those in New York City (NYC). Pig ST398 strains contained a large region of recombination representing imports from multiple sequence types (STs). Phylogeographic analyses supported the spread of ST398-MSSA along local cultural and migratory links between parts of the Caribbean, North America, and France, respectively. Applying pairwise single-nucleotide polymorphism (SNP) distances as a measure of genetic relatedness between isolates, we observed that ST398 not only clustered in households but also frequently extended across local social networks. Isolates collected from environmental surfaces reflected the full diversity of colonizing individuals, highlighting their potentially critical role as reservoirs for transmission and diversification. Strikingly, we observed high within-host SNP variability compared to our previous studies on the dominant methicillin-resistant Staphylococcus aureus (MRSA) clone USA300. Our data indicate that the dynamics of colonization, persistence, and transmission differ substantially between USA300-MRSA and ST398-MSSA. Taken together, our study reveals local and international routes of transmission for a major MSSA clone, indicating key impacts of recombination and mutation on genetic diversification and highlighting important ecological differences from epidemic USA300. Our study demonstrates extensive local and international routes of transmission for a major MSSA clone despite the lack of substantial antibiotic resistance

    A method for single pair mating in an obligate parasitic nematode

    Get PDF
    Parasitic nematode species have extremely high levels of genetic diversity, presenting a number of experimental challenges for genomic and genetic work. Consequently, there is a need to develop inbred laboratory strains with reduced levels of polymorphism. The most efficient approach to inbred line development is single pair mating, but this is challenging for obligate parasites where the adult sexual reproductive stages are inside the host, and thus difficult to experimentally manipulate. This paper describes a successful approach to single pair mating of a parasitic nematode, Haemonchus contortus. The method allows for polyandrous mating behaviour and involves the surgical transplantation of a single adult male worm with multiple immature adult females directly into the sheep abomasum. We used a panel of microsatellite markers to monitor and validate the single pair mating crosses and to ensure that the genotypes of progeny and subsequent filial generations were consistent with those expected from a mating between a single female parent of known genotype and a single male parent of unknown genotype. We have established two inbred lines that both show a significant overall reduction in genetic diversity based on microsatellite genotyping and genome-wide single nucleotide polymorphism. There was an approximately 50% reduction in heterozygous SNP sites across the genome in the MHco3.N1 line compared with the MoHco3(ISE) parental strain. The MHco3.N1 inbred line has subsequently been used to provide DNA template for whole genome sequencing of H. contortus. This work provides proof of concept and methodologies for forward genetic analysis of obligate parasitic nematodes

    Proboscidean Mitogenomics: Chronology and Mode of Elephant Evolution Using Mastodon as Outgroup

    Get PDF
    We have sequenced the complete mitochondrial genome of the extinct American mastodon (Mammut americanum) from an Alaskan fossil that is between 50,000 and 130,000 y old, extending the age range of genomic analyses by almost a complete glacial cycle. The sequence we obtained is substantially different from previously reported partial mastodon mitochondrial DNA sequences. By comparing those partial sequences to other proboscidean sequences, we conclude that we have obtained the first sequence of mastodon DNA ever reported. Using the sequence of the mastodon, which diverged 24–28 million years ago (mya) from the Elephantidae lineage, as an outgroup, we infer that the ancestors of African elephants diverged from the lineage leading to mammoths and Asian elephants approximately 7.6 mya and that mammoths and Asian elephants diverged approximately 6.7 mya. We also conclude that the nuclear genomes of the African savannah and forest elephants diverged approximately 4.0 mya, supporting the view that these two groups represent different species. Finally, we found the mitochondrial mutation rate of proboscideans to be roughly half of the rate in primates during at least the last 24 million years

    Population genomics applications for conservation: the case of the tropical dry forest dweller Peromyscus melanophrys

    Get PDF
    Recent advances in genomic sequencing have opened new horizons in the study of population genetics and evolution in non-model organisms. However, very few population genomic studies have been performed on wild mammals to understand how the landscape affects the genetic structure of populations, useful information for the conservation of biodiversity. Here, we applied a genomic approach to evaluate the relationship between habitat features and genetic patterns at spatial and temporal scales in an endangered ecosystem, the Tropical Dry Forest (TDF). We studied populations of the Plateau deer mouse Peromyscus melanophrys to analyse its genomic diversity and structure in a TDF protected area in the Huautla Mountain Range (HMR), Mexico based on 8,209 SNPs obtained through Genotyping-by-Sequencing. At a spatial scale, we found a significant signature of isolation-by-distance, few significant differences in genetic diversity indices among study sites, and no significant differences between habitats with different levels of human perturbation. At a temporal scale, while genetic diversity levels fluctuated significantly over time, neither seasonality nor disturbance levels had a significant effect. Also, outlier analysis revealed loci potentially under selection. Our results suggest that the population genetics of P. melanophrys may be little impacted by anthropogenic disturbances, or by natural spatial and temporal habitat heterogeneity in our study area. The genome-wide approach adopted here provides data of value for conservation planning, and a baseline to be used as a reference for future studies on the effects of habitat fragmentation and seasonality in the HMR and in TDF

    Dynamics of Molecular Evolution and Phylogeography of Barley yellow dwarf virus-PAV

    Get PDF
    Barley yellow dwarf virus (BYDV) species PAV occurs frequently in irrigated wheat fields worldwide and can be efficiently transmitted by aphids. Isolates of BYDV-PAV from different countries show great divergence both in genomic sequences and pathogenicity. Despite its economical importance, the genetic structure of natural BYDV-PAV populations, as well as of the mechanisms maintaining its high diversity, remain poorly explored. In this study, we investigate the dynamics of BYDV-PAV genome evolution utilizing time-structured data sets of complete genomic sequences from 58 isolates from different hosts obtained worldwide. First, we observed that BYDV-PAV exhibits a high frequency of homologous recombination. Second, our analysis revealed that BYDV-PAV genome evolves under purifying selection and at a substitution rate similar to other RNA viruses (3.158×10−4 nucleotide substitutions/site/year). Phylogeography analyses show that the diversification of BYDV-PAV can be explained by local geographic adaptation as well as by host-driven adaptation. These results increase our understanding of the diversity, molecular evolutionary characteristics and epidemiological properties of an economically important plant RNA virus
    corecore