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ABSTRACT 26 

Parasitic nematodes species have extremely high levels of genetic diversity, presenting a number of 27 

experimental challenges for genomic and genetic work. Consequently, there is a need to develop 28 

inbred laboratory strains with reduced levels of polymorphism. The most efficient approach to 29 

inbred line development is single pair mating, but this is challenging for obligate parasites where the 30 

adult sexual reproductive stages are inside the host, and so difficult to experimentally manipulate. 31 

This paper describes a successful approach to single pair mating in a parasitic nematode, 32 

Haemonchus contortus. The method allows for polyandrous mating behaviour and involves the 33 

surgical transplantation of a single adult male worm with multiple immature adult females directly 34 

into the sheep abomasum. We used a panel of microsatellite markers to monitor and validate the 35 

single pair mating crosses and to ensure that the genotypes of progeny and subsequent filial 36 

generations were consistent with those expected from a mating between a single female parent of 37 

known genotype and a single male parent of unknown genotype. We have established two inbred 38 

lines, that both show a significant overall reduction in genetic diversity based on microsatellite 39 

genotyping and genome-wide single nucleotide polymorphism (SNP). There was an approximately 40 

50% reduction in heterozygous SNP sites across the genome in MHco3.N1 line compared to the 41 

MoHco3(ISE) parental strain. The MHco3.N1 inbred line has subsequently been used to provide DNA 42 

template for whole genome sequencing of H. contortus. This work provides proof of concept and 43 

methodologies for forward genetic analysis of obligate parasitic nematodes. 44 

 45 

  46 



 

1. Introduction 47 

Parasitic nematodes are amongst the most important pathogen groups causing quality of life 48 

threatening disease in humans worldwide (Prichard et al., 2012). Approximately 2.0 billion people, 49 

mostly living in impoverished regions where sanitation is poor, are affected by soil-transmitted 50 

helminthiases. These diseases result in an array of clinical effects, ranging from gastrointestinal 51 

disorders to anaemia, reduced physical fitness, decreased cognitive function and poor growth (De 52 

Silva et al., 2003). The control of human soil-transmitted helminthiases is underpinned globally by 53 

the use of anthelmintics in mass drug administration (MDA) programmes (McCarty et al., 2014; 54 

Supali et al., 2013; Harris et al., 2015). Nematode parasites are also important causes of production 55 

limiting diseases in ruminant livestock (Nieuwhof and Bishop, 2005), being particularly relevant in 56 

already impoverished subtropical regions (Besier et al., 2016). The use of anthelmintic drugs had led 57 

to the selection of drug resistance, which is now widespread in many parasites grazing livestock. 58 

Concerns are now emerging regarding similar problems for the MDA programs being used to control 59 

human helminths.  60 

There is heritable variation in traits such as virulence, host-specificity, environmental 61 

adaption and drug resistance, which are important constraints to sustainable helminth control in 62 

both humans and animals (Criscoine et al., 2009). There is a huge potential to use genetic crossing 63 

and mapping approaches in parasitic helminths to identify both single and quantitative trait loci 64 

underlying phenotypes of interest (Chevalier et al., 2014). For example, genetic crossing experiments 65 

are more powerful in identifying loci associated with anthelmintic resistance than laboratory 66 

selection, or the study of specific candidate genes chosen largely on the basis experimental work 67 

implicating them as encoding drug targets, or molecules involved in drug efflux (Rezansoff et al., 68 

2016). However, although genomic resources are rapidly advancing with genome projects being 69 

undertaken for an increasing number of species, we still lack the basic tools and techniques to 70 

undertake genetic crossing and mapping in parasitic nematodes. Undertaking genetic crosses 71 

requires genetically and phenotypically divergent, and preferably near-isogenic parental lines. 72 

Developing these for nematode parasites is challenging since they cannot be maintained in vitro 73 

throughout their life cycle, hence experimental models depend upon the infection of the parasites’ 74 

mammalian hosts. High levels of host specificity make these models intractable for human parasites 75 

and necessitate the development of animal models. The ruminant nematode parasite, H. contortus is 76 

currently the most important model system for the study of anthelmintic drug resistance as well 77 

being a key tool for anthelmintic drug and vaccine discovery research (Gilleard, 2013). A draft 78 

genome sequence has recently been published (Laing et al., 2013) and assembly and annotation 79 

improvements are on-going (Laing et al., 2016). In common with a number of other parasitic 80 



 

nematode species, the high level of genetic polymorphism has made high quality assemblies difficult 81 

to produce (Gilleard and Redman, 2016). Hence, the development of inbred parasitic nematode lines 82 

with reduced levels of sequence polymorphism is an important goal both for genome assembly and 83 

for undertaking genetic crossing and mapping approaches.   84 

Parasitic nematodes are dioecious, sexually reproducing, diploid organisms, hence the 85 

conceptually simplest method of generating inbred lines is by single pair matings. However, there 86 

are no published reports of genetically validated single pair matings for any obligate parasitic 87 

nematode species to date. This paper describes successful single pair mating for H. contortus 88 

following direct transplantation of a single sexually immature adult male with multiple sexually 89 

immature adult females of the MHco3(ISE) strain into the abomasum of a recipient parasite-free 90 

sheep. The method exploits the ease of establishment of parasite populations in a host, while 91 

accounting for polyandry (Redman et al., 2008a). Genetic and genomic characterisation of the 92 

parental and derived inbred lines demonstrate that the procedure significantly reduced genetic 93 

polymorphism of the MHco3(ISE) reference genome strain. This provides proof of concept of single 94 

mating in obligate parasitic nematodes, opening up new avenues of genetic approaches to study the 95 

biology of these important organisms.  96 

 97 

2. Materials and Methods 98 

2.1. Parasite material 99 

Cryopreserved L3 larvae of the ISE strain (Otsen et al., 2000; 2001) were obtained from Dr 100 

Fred Borgsteede (Central Veterinary Institute, Lelystad, Netherlands) by J. S. Gilleard. The strain was 101 

subsequently maintained at the Moredun Research Institute by serial passage through donor sheep 102 

and renamed MHco3(ISE) to distinguish it from versions of ISE strain used in other laboratories 103 

(Redman et al., 2008b). This strain was adopted as the original reference strain for the H. contortus 104 

genome project being undertaken at the Wellcome Trust Sanger Institute (Laing et al., 2013). 105 

 106 

2.2. Genetic crossing by surgical transplantation 107 

The overall experimental scheme is shown schematically in Fig. 1. To produce sexually 108 

immature adults for surgical transfer, a four month-old ‘worm-free’ donor lamb was orally dosed on 109 

day 0 with approximately 10,000 MHco3(ISE) H. contortus L3. The donor lamb was euthanased on 110 

day 14 post-infection and the contents of its abomasum were collected. A single sexually immature 111 

male and 32 sexually immature female H. contortus L4 were then surgically transferred, within 2 112 



 

hours of recovery from the donor lamb, into the abomasum of a 4 month-old recipient lamb (lamb 113 

A, Fig. 1). In addition, a single sexually-immature male and 20 sexually-immature females were 114 

surgically transferred to two other lambs (lambs B and C, Fig. 1). The faecal trichostrongyle egg 115 

counts (FEC) of the three recipient lambs were monitored daily from days 14 to 21 (1 to 7 days post 116 

transplantation) using a standard salt floatation method with a minimum detection threshold of 1 117 

egg per gram (epg) (Christie and Jackson, 1982). All three lambs had positive egg counts by day 18 118 

that increased to 20 epg on day 21. 119 

 120 

2.3. Collection of progeny from single female adult nematodes following mating with a single male 121 

The three recipient lambs were euthanased 7 days after surgical transfer (day 21). The 122 

single, transplanted male worms could not be recovered from any of the three recipient lambs at 123 

autopsy but 12, 6 and 12 of the transplanted female worms were recovered from the abomasa of 124 

recipient lambs A, B and C, respectively. All recovered female worms were immediately picked into 125 

sterile phosphate buffered saline (PBS) and transferred individually into separate wells of 24 well 126 

plates each containing 1 ml of warm RPMI 1640 cell culture media (Gibco) and incubated in 5% CO2 127 

at 37oC for 8 hours to promote egg shedding. They were then transferred to a 24oC incubator for 36 128 

hours to permit hatching of any fertilised eggs. Although all of the recovered female worms shed 129 

several hundred eggs, the development and hatching rate was extremely low. Consequently, only 4 130 

female MHco3 H. contortus produced L1 broods of sufficient size (minimum n = 100) to allow their 131 

molecular and phenotypic characterisation and subsequent propagation of another generation. 132 

These four females were arbitrarily named N1 (recovered from recipient lamb A), N2, N3 and N4 133 

(recovered from recipient lamb B) respectively. DNA lysates were prepared from approximately half 134 

of the L1 stage larvae in each brood (F1 progeny of the single parent mating) and from the head of 135 

each adult female parent. The remaining L1 were retained for coproculture development to the 136 

infective L3 larval stage, to allow infection of more animals to produce the next filial generation.  137 

 138 

2.4. Larval coproculture 139 

L1 were either transferred onto a disc of cotton filter paper placed in a petri dish containing 140 

5 ml of an OP50 Escherichia coli culture in Luria broth/streptomycin, or inoculated into 10 g of faeces 141 

collected from a known ‘worm-free’ donor lamb that had been sequentially treated with 5 mg/kg of 142 

fenbendazole and 7.5 mg/kg of levamisole 5 days previously. The filter paper/E. coli and larval 143 

coprocultures were then placed individually in perforated plastic bags and incubated in a closed 144 

laboratory incubator at 24oC for 7 days.  L3 were then recovered from the larval cultures by 145 



 

Baermannisation (MAFF, 1986) and transferred in tapwater into tissue culture flasks and stored at 146 

8oC for 3 weeks before they were used to infect donor lambs. 15, 20, 3 and zero L3 were recovered 147 

from the coprocultures of the broods of the adult female MHco3 individuals, N1, N2, N3 and N4. 148 

 149 

2.5. Propagation of inbred lines resulting from single pair matings 150 

In order to propagate filial lines, two 6 to 7 month-old ‘worm-free’ lambs were orally 151 

infected with 15 MHco3.N1.F1 L3 larvae (lamb D, Fig. 1) and 20 MHco3.N2.F1 L3 (lamb E, Fig. 1). The 152 

FECs of these two lambs were monitored from 14 days post-infection. Mean daily FECs were 1.2 (SD, 153 

1.0) epg (lamb D), and 22 (SD, 16) epg (lamb E) between 21 and 60 days post-infection (Fig. 1). In 154 

order to propagate the next filial generation, this process was repeated using L3 larvae derived from 155 

eggs (F2 progeny) recovered from lambs D and E (Fig. 1). Two different 8 to 9 month-old ‘worm-free’ 156 

lambs were infected separately with 7,500 MHco3.N1.F2 (lamb F, Fig. 1) and MHco3.N2.F2 L3 (lamb 157 

G, Fig. 1). The mean daily FECs between 20 and 60 days post-infection of lamb F and lamb G were 158 

547 (SD, 265) epg and 420 (SD, 200) epg, respectively. An additional round of passage was 159 

undertaken for the MHco3.N1 line only.  7,500 and 5,000 MHco3.N1.F3 L3 derived from eggs 160 

recovered from lamb F were used to infect a 10 month-old lamb to produce a MHco3.N1.F4 (lamb H, 161 

Fig. 1) lines. The mean daily FECs of this lambs between 20 and 60 days post-infection was 33 (SD, 162 

29) (Fig. 1).   163 

Freedom of contamination of the H. contortus populations with other nematode species was 164 

periodically tested during the development of the inbred lines by fluorescent agglutinin staining 165 

(Palmer and McCombe, 1996) and examination of larval morphology (Van Wyk and Mayhew, 2013). 166 

The lambs were maintained for between 2 and 5 months before they were euthanased and any 167 

surviving H. contortus were recovered from their abomasa, counted and stored in 70% ethanol.   168 

 169 

2.6. DNA Lysate preparation 170 

Individual worm DNA lysates were prepared from female heads, L1 (F1) and sodium 171 

hypochlorite-exsheathed L3 (F2, F3 and F4) in a volume of 25 μl using standard techniques (Redman et 172 

al., 2008b). Bulk worm preparations of 500 ex-sheathed L3 were made for F2, F3 and F4 generations. 1 173 

μl of a 1:30 dilution of female head lysates or of a 1:10 dilution of L1 lysates was used as PCR 174 

template. Dilutions of lysate buffer without template, made in parallel, were included as negative 175 

controls for all PCR amplifications. All DNA lysates were subjected to a previously published ITS-2 176 



 

rDNA PCR assay, to confirm species identity as H. contortus (Redman et al., 2008b; Wimmer et al., 177 

2004). 178 

 179 

2.7. Single strand conformation polymorphism 180 

The genetic diversity of the GABA Cl subunit HG1 locus (Blackhall et al., 2003), as well as that 181 

of GluCl α and β subunit loci (Blackhall et al., 1998) (Supplementary Fig. S2A) was examined by single 182 

strand conformation polymorphism (SSCP) using previously described PCR primers (Blackhall et al., 183 

2003). The thermal cycler conditions used were: 95oC for 4 minutes; followed by 40 cycles of 95oC 184 

for 30 seconds, 54oC for 30 seconds, and 72oC for 30 seconds; a final extension stage of 72oC for 5 185 

minutes. Amplicons were first visualised on a 1.2% agarose gels and then run on non-denaturing 186 

polyacrylamide gels as previously described (Skuce et al., 2010).  187 

 To confirm the allelic assignments of the GABA Cl subunit HG1 SSCP genotyping, the PCR 188 

products produced from two individual MHco3.N1.F2 L3 DNA heterozygotes (6F and 9G) were cloned 189 

and sequenced. Briefly, amplicons were run on a 1% agarose electrophoretic gel to enable the 190 

excision of 305 bp bands from which DNA was then isolated (QIAquik Gel Extraction kit, Qiagen). 191 

DNA was ligated into pGEM-T (Promega) plasmid vectors to allow transformation into JM109 192 

competent E. coli cells (Stratagene).  Plasmid DNA from the cultured transformed cells was then 193 

purified using a Wizard Plus SV Minipreps DNA Purification System (Promega) and sequenced using 194 

SP6 and T7 universal primers in both orientations. 195 

 196 

2.8. Microsatellite  genotyping 197 

Microsatellite genotyping of ‘bulk’ DNA lysates, made from approximately 500 larvae, was 198 

performed on MHco3(ISE), MHco3.N1.F2, MHco3.N1.F3, MHco3.N1.F4, MHco3.N2.F2 and 199 

MHco3.N2.F3 H. contortus lines. Ten microsatellite markers, previously shown to be polymorphic in 200 

the MHco3(ISE) strain were used: Hcms25, Hcms33 and Hcms36 (Otsen et al., 2001), Hcms8a20, 201 

Hcms22co3 (Redman et al., 2008b), HcmsX142, HcmsX256, HcmsX337 (Redman et al., 2008a), 202 

Hcms3561 and Hcms18210 (Redman et al., 2012).  Individual worm genotyping was also performed 203 

for four of these loci, Hcms8a20, Hcms36, Hcms3561 and Hcms25 plus two additional loci, 204 

HcmsX182 and HcmsX240 (Redman et al., 2008a), on the N1 and N2 adult female parent heads and 205 

30 individual larvae for each of the following populations: MHco3.N1.F1 and MHco3.N2.F1 (L1); 206 

MHco3.N1.F2, MHco3.N2.F2, MHco3.N1.F3, MHco3.N2.F3 (L3) and MHco3(ISE). All microsatellite 207 

genotyping, on both ‘bulk’ and single worm DNA lysates, was performed using the same PCR 208 



 

amplification methods and parameters as previously described (Redman et al., 2008b). Capillary 209 

electrophoresis was performed using an ABI Prism 3100 genetic analyzer (Applied Biosystems, Foster 210 

City, CA) for the accurate sizing of microsatellite PCR products. The forward primer of each 211 

microsatellite primer pair was 5'-end labelled with FAM, HEX, or NED fluorescent dyes (MWG) and 212 

electrophoresed with a GeneScan ROX 400 (Applied Biosystems) internal size standard. Individual 213 

chromatograms were analysed using Genemapper Software Version 4.0 (Applied Biosystems). 214 

 215 

2.9. Genetic analysis 216 

Multilocus genotype principal coordinates analysis was conducted using GenAlEx version 6.1 217 

add-in software (Peakall and Smouse, 2006) for Microsoft Excel to provide a schematic indication of 218 

the degree of inbreeding. The average number of alleles per locus, observed heterozygosities (Ho), 219 

and unbiased estimates of expected heterozygosity (He) were calculated using Arlequin version 3.11 220 

software (Nei, 1978, Excoffier et al., 2005). Data were defined as ‘standard’ rather than 221 

‘microsatellite’ because the loci did not adhere to the stepwise mutation model. Exact tests for 222 

Hardy-Weinberg equilibrium were tested per locus using Fisher’s exact probability test based on 223 

contingency tables (Raymond and Rousset, 1995), where P-values <0.05 were taken as evidence of 224 

significant deviation. Significance levels were estimated using 100,000 Markov chain steps.  Pairwise 225 

linkage disequilibrium was tested for using a likelihood-ratio test (Slatkin and Excoffier, 1996). For 226 

each locus, estimates of inbreeding (Fis) were calculated using an algorithm based on the formula (He 227 

- Ho)/ He. Pairwise Fst values were calculated using Arlequin version 3.11 software. Analysis of 228 

Molecular Variance (AMOVA) was performed to test for population differentiation of samples at 229 

various levels, locus by locus using the Arlequin version 3.11 software.   230 

 231 

2.10. Genome-wide SNP analysis 232 

Genomic libraries were prepared from 400 MHco3(ISE) and 400 MHco3.N1.F3 adult worms 233 

for Illumina sequencing using previously described methods (Laing et al., 2013; Kozarewa et al., 234 

2009) (Supplementary Table S3). Preliminary analysis and base-calling for data from the Illumina 235 

HiSeq sequencing machines used the RTA1.8 analysis pipelines. Whole-genome shotgun sequence 236 

data was generated from these libraries on two different Illumina platforms, producing different 237 

numbers of reads and reads of different lengths (Supplementary Table S3). To produce comparable 238 

data between the two biological samples, read pairs were randomly sampled from the larger (inbred 239 

material) sequencing data by keeping each pair of reads in the subsampled file with a probability of 240 

0.39, and by clipping 12 bp from each end of every read. Reads were mapped against the released 241 



 

370Mb v1.0 genome assembly of H. contortus (Laing et al., 2013), available at the GenBank database 242 

under project ID PRJEB506, using the mapper SMALT v0.7.0.1 243 

(http://www.sanger.ac.uk/resources/software/smalt) in paired-end mode, with an indexing k-mer 244 

size of 13 and step size of 1, mapping non-repetitively (-r -1), with a minimum identity of 0.8 to 245 

report a mapping (-y 0.8) and exhaustively searching for alignments of each read independently of 246 

its mate pair (-x), and only reporting reads as properly paired if they were mapped than 1000bp 247 

apart on the reference genome. Single nucleotide polymorphism (SNP) variants were called jointly 248 

from the three mapping output files using samtools v0.1.19-44428cd (Li et al., 2009) using the 249 

mpileup command, skipping alignments with either mapping or base quality scores less than 13. 250 

Density, distribution and types of variant calls were tallied using vcftools v0.1.11 251 

(https://sourceforge.net/projects/vcftools/). Estimates of the nucleotide diversity (π) for the pools of 252 

worms sequenced in each library were calculated independently from the variant calling approach 253 

outlined above using PoPoolation2 v1.013 (Kofler et al., 2011). 254 

 255 

2.11. Ethics statement 256 

All experimental procedures described in this manuscript were examined and approved by 257 

the Moredun Research Institute Experiments and Ethics Committee and were conducted under 258 

approved UK Home Office licenses in accordance with the Animals (Scientific Procedures) Act of 259 

1986. The Home Office license numbers are PPL 60/03223 and PPL 60/03899 and experimental IDs 260 

for these studies were E06/58. E06/75 and E09/36.   261 

 262 

3. Results 263 

3.1. The establishment of two independent inbred lines by single pair mating of H. contortus.  264 

Our preliminary experiments to replicate anecdotal reports suggesting that it might be 265 

possible that a single male and a single female H. contortus, when transferred directly into the 266 

abomasum of a ‘worm-free’ recipient sheep could survive for long enough to find each other, mate 267 

and shed eggs were unsuccessful, highlighting the severe biological limitations to this approach. 268 

Consequently, we developed a method in which a single immature male worm was transplanted 269 

with a number of immature female worms, then following mating, the female worms were 270 

recovered on autopsy, placed in individual wells of a 24 well plate and allowed to lay eggs (F1 271 

progeny) in vitro. Two of the recovered female worms, designated N1 and N2, produced broods of 272 

sufficient size and viability to enable the propagation of the next filial generations. 15 and 20 L3 from 273 



 

the N1 and N2 founding female parents, respectively, were used to orally infect two separate lambs 274 

to establish the MHco3.N1 and MHco3.N2 inbred lines (Fig. 1). 275 

 276 

3.2. Validation of single pair mating and assessment of polymorphism of inbred lines by 277 

microsatellite genotyping 278 

Bulk DNA genotyping with 10 microsatellite markers, on DNA prepared from pools of 279 

approximately 500 L3 per population, was used to provide an initial assessment of the genetic 280 

diversity of the MHco3.N1 and MHco3.N2 inbred lines and indicate of the success of the single pair 281 

matings. The total number of alleles detected was reduced in both of the inbred lines relative to the 282 

founding MHco3(ISE) population with a greater loss of overall diversity in MHco3.N1. Across the 10 283 

markers, a total of 28 alleles in the MHco3(ISE) population was reduced to 15 and 20 alleles in the 284 

derived MHco3.N1 and MHco3.N2 lines respectively. There was a loss of alleles at 7 out of the 10 loci 285 

in both cases (Supplementary Table S1).  286 

The MHco3(ISE) strain, the individual N1 and N2 founder female parents and populations of 287 

the inbred MHco3.N1 and MHco3.N2 lines were analysed in more detail by genotyping individual 288 

worms at six of the most discriminatory loci. The level of polymorphism of the parental MHco3(ISE) 289 

strain was consistent with that previously observed with other panels of microsatellite loci (Redman 290 

et al., 2008b) with a mean of 3.17 alleles per locus and an expected heterozygosity (HE) of 0.572. 291 

There was a clear reduction in polymorphism in F1 and F2 populations of both inbred lines with the 292 

MHco3.N1 again showing the greatest reduction (Supplementary Table S2).   293 

Pairwise FST estimates based on the multi-locus genotype data revealed a high degree of 294 

genetic differentiation between the two inbred strains as well as between both lines and the 295 

parental MHco3(ISE) strain. No statistically significant genetic differentiation was observed between 296 

any of the filial populations within the same inbred line demonstrating that the genetic integrity of 297 

both the inbred lines was maintained despite passage (Supplementary Fig. S1A). Further evidence 298 

for reduction in genetic diversity by the single parent mating procedure was provided by principal 299 

component analysis of individual worm multi-locus genotypes (Supplementary Fig. S1B). 300 

 301 

3.3. Examination of the HG1 GABA Cl locus using SSCP 302 

The HG1 gene which encodes a GABA-gated chloride channel (Blackhall et al., 2003) was 303 

selected and used as an additional marker to monitor the single pair meeting and inbreeding 304 

process, since this had been shown to have a high level of genetic diversity in the MHco3(ISE) strain 305 



 

(Supplementary Fig. S2). SSCP profiles were obtained for 84 MHco3(ISE) L3 and at least 15 distinct 306 

profiles were discernable (Supplementary Fig. S3A). However, only three different SSCP profiles were 307 

discernable from 57 F1 and 65 F2 progeny of the MHco3.N1 inbred line (Supplementary Fig. S3B). 308 

 309 

3.4. Comparison of MHco3(ISE) and MHco3.N1 genome-wide SNP polymorpshism 310 

Whole genome Illumina sequencing was performed on MHco3(ISE) and MHco3.N1 311 

populations (Supplementary Table S3). The number of sites classified as heterozygous within the 312 

MHco3.N1 population in the variant calls from mpileup was almost 50% fewer than those called for 313 

the MHco3(ISE) populations. Using the number of reads supporting each allele at a site as a rough 314 

estimate of the allele frequency in the pool of adult worms sequenced, there is a clear pattern of a 315 

greater proportion of sites having minor alleles segregating at intermediate frequencies (between 316 

0.15 and 0.35) within the MHco3.N1 population (Supplementary Fig. S4A). The MHco3.N1 317 

population is particularly reduced in rare alleles, as expected from a recent, extreme population 318 

bottleneck. This pattern is consistent with these nematodes being the offspring a single-pair mating, 319 

where we would expect minor alleles to be present on just one of the four parental haplotypes. The 320 

same pattern is clear in the subset of sites that are polymorphic in both populations, where the 321 

nucleotide diversity (π) is lower in MHco3.N1 than in MHco3(ISE) at almost two-thirds of sites 322 

(332/537) on the longest assembly scaffold (Supplementary Fig. S4B). 323 

 324 

4. Discussion 325 

The original ISE strain of H. contortus had been previously inbred from the outbred SE 326 

population (Otsen et al., 2000; 2001). This was achieved by dissecting the eggs from an adult female 327 

SE strain H. contortus, culturing these eggs for 7 days in ‘worm-free’ faeces, and then injecting 328 

recovered L3 into the forestomach of recipient sheep. The recipient sheep were euthanased one 329 

week after they had started shedding trichostrongyle eggs. A single benzimidazole susceptible adult 330 

female H. contortus had then been selected on the basis of its β-tubulin isotype 1 genotype (Kwa et 331 

al., 1994), and the process repeated through fifteen generations (Roos et al., 2004), to yield what 332 

was considered to be an inbred benzimidazole susceptible isolate. However, genetic analysis with 333 

microsatellite markers subsequently revealed high levels of genetic polymorphism in the MHco3(ISE) 334 

strain of H. contortus (Redman et al., 2008b).  335 

This paper presents the development of a novel method to achieve a single pair parasitic 336 

nematode mating involving the surgical transfer of multiple female and one male day 14 parasitic-337 



 

stage H. contortus to the abomasum of recipient lambs. The experimental protocol took into account 338 

the known polyandrous mating behaviour of H. contortus (Redman et al., 2008a) by using a single 339 

male transplanted with multiple females. The method exploited the ability to differentiate between 340 

male and female nematodes before they reach sexual maturity, which is a prerequisite for genetic 341 

crosses (Chevalier et al., 2016). The transplanted male worm successfully fertilised multiple female 342 

worms in each case and this experimental design ensured each female brood was from a single pair 343 

mating event. The experimental design also prevented any risk of extraneous parasitic nematode 344 

infection of recipient sheep by euthanasing them and recovering egg laying female H. contortus well 345 

within the minimum prepatent period of contaminant parasitic nematodes. Potential issues caused 346 

by fly-borne parasitic nematode contamination of coprocultures were addressed by their incubation 347 

in an isolated closed environment, primarily on filter paper in a live E. coli system. The methods used 348 

to prevent parasitic nematode contamination were apparently effective for the development of the 349 

MHco3.N1 and MHoc3.N2 lines, since the genetic analyses presented in this paper are consistent 350 

with those expected from a single pair mating event. Failure to recover the male parent H. contortus 351 

from any of the three recipient lambs, while between 30% and 60% of the females were recovered 352 

was disappointing. This could be due to chance, or might suggest that the behaviour of male 353 

parasitic nematodes in seeking out females predisposes to their loss from the abomasum. 354 

Determination of both parental genotypes founding the inbred lines would have aided further 355 

genetic validation based on the male parental genotype. 356 

The microsatellite individual genotyping data was entirely consistent with that expected if 357 

the two MHco3.N1 and MHco3.N2 inbred lines, were founded by single pair matings of the N1 and 358 

N2 female parents. Although the lack of knowledge of the male parental genotypes precluded 359 

definitive Mendelian genetic analysis of the crosses, the data overall provided strong support of the 360 

success of the single pair matings. The appropriate maternal alleles for each microsatellite marker 361 

were present in the filial generations of each cross and the total number of alleles present was 362 

entirely consistent with single pair mating. The multilocus genotype analysis of MHco3.N1.F1 and 363 

MHco3.N2.F1 worms was also strongly supportive of successful single pair mating, with the F1 364 

multilocus genotypes forming tight clusters around the respective maternal parental genotypes on 365 

PCA plots.   366 

An overall loss of genetic polymorphism in both the MHco3.N1 and MHco3.N2 lines 367 

compared with the parental MHco3 (ISE) strain was revealed by the microsatellite markers, the 368 

GABA Cl SSCP profiles and the whole genome sequencing analysis. The Hco3.N1 line showed the 369 

greatest loss of polymorphism of the two inbred lines based on the microsatellite genotyping with a 370 

loss of 13 out of 28 alleles (46%) across the 10 microsatellite markers genotyped. Consequently, the 371 



 

inbred MHco3.N1 population was propagated further and used as the reference strain for the H. 372 

contortus, genome project (Laing et al., 2013). Subsequent, genome-wide SNP analysis was 373 

consistent with the microsatellite analysis showing that MHco3.N1 line had an almost 40% reduction 374 

in SNP positions called as heterozygous across the genome, and reduced nucleotide diversity at 375 

shared heterozygous sites, compared to MHco3(ISE).   376 

The two inbred lines retained largely different alleles from the MHco3(ISE) populations, as 377 

demonstrated in the multilocus genotyping PCA plots and pairwise FST analyses. The production of 378 

genetically divergent inbred H. contortus lines using this method could be exploited in a number of 379 

ways. It could be used to develop genetically divergent strains with which to undertake genetic 380 

crosses for the production of a genetic map, or to identify the position of genetic loci of interest, 381 

such as those underlying anthelmintic resistance (Le Jambre et al., 1999). A prerequisite for the 382 

creation of a genetic map is that the parent populations have minimal within-strain polymorphism, 383 

but high levels of between-strain polymorphism, in order to allow the alternative parental alleles to 384 

be identified in F2 progeny resulting from the genetic cross. With the exception of the Chiswick 385 

avermectin resistant (CAVR) strain, which arose as a serendipitous, extraneous, ivermectin resistant 386 

contaminant of an Australian laboratory passaged Trichostrongylus colubriformis strain (Le Jambre, 387 

1993), the currently available laboratory strains of H. contortus are too polymorphic to use in 388 

conventional mapping studies. Hence generation of experimentally inbred, near-isogenic, genetically 389 

divergent strains is useful. Cases of multigenic resistance could be investigated by segregating 390 

different genetic loci contributing to an anthelmintic resistance phenotype into separate inbred 391 

lines.   392 

In conclusion, the proof of concept of molecular and genetic validation of a single parent 393 

mating method to inbreed H. contortus will provide a potentially useful tool in the further 394 

development of genomic resources that are needed to inform sustainable nematode parasite 395 

control. 396 

 397 

Acknowledgments  398 

We are grateful for funding from the Higher Education Funding Council of England (HEFCE), the 399 

Department for Environment, Food and Rural Affairs (DEFRA) and the Scottish Funding Council (SFC) 400 

Veterinary Training Research Initiative (VTRI) programme VT0102 (integration of functional 401 

genomics and immunology and their application to infectious disease in ruminants) and for the 402 

support of Pfizer Animal Health. Work at the R(D)SVS (NDS) uses facilities funded by the 403 

Biotechnology and Biological Sciences Research Council (BBSRC). The Moredun Research Institute 404 



 

(DJB and AAM) receives funding from the Scottish Government. HNv-G, MB, NH, JAC and the 405 

Haemonchus contortus genome project are funded by the Wellcome Trust through their core 406 

support of the Wellcome Trust Sanger Institute (grant 206194) and a Wellcome Trust Project Grant 407 

to JSG (grant 067811). JSG also acknowledges funding from the Canadian Institutes of Health 408 

Research (CIHR) 230927 and from the NSERC-CREATE Training Program in Host-Parasite Interaction 409 

at the University of Calgary (grant number 403888-2012). 410 

 411 

Contributions  412 

NDS, JSG and FJ conceived the method. NDS, AAM, DJB and FJ undertook the animal work and gross 413 

parasitology. NDS, EM, HNv-G, NH, MB and JAC undertook the molecular studies and analysis of the 414 

data. NDS, ER, JAC and JSG wrote the paper. 415 

 416 

Figure legend 417 

Fig. 1. Genetic crossing and passaging approach to inbreed the MHco3(ISE) standard genome strain 418 

of H. contortus. 419 

Schematic representation of experimental aim and summary of nomenclature.  420 

*gDNA extracted from MHco3.N1.F3 adults used for genome sequencing (Laing et al., 2013) 421 
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Supplementary data 531 

 532 

Supplementary Fig. S1. Genetic differentiation between populations of inbred worms using a 533 

panel of four microsatellite markers.  534 

(A) Population pairwise FSTs comparing the F1 and F2 populations of the MHco3.N1 and MHco3.N2 535 

inbred lines and the parent MHco3(ISE) population. Significant genetic divergence is highlighted by 536 

underlining and bolding. 537 

The data show a high degree of genetic differentiation between the two inbred strains 538 

(pairwise FST  = 0.300-0.512) as well as between both lines and the parental MHco3(ISE) strain. The 539 

MHco3.N1 line appears to be the slightly more divergent from the parental MHco3(ISE) strain than 540 

the MHco3.N2 line (eg. MHco3.N1.F1 FST = 0.262 compared with MHco3.N2.F1 FST = 0.197). The FST 541 

values remain statistically significant between the MHco3(ISE) population and both inbred lines at 542 

each filial generation.  In contrast, no statistically significant genetic differentiation was observed 543 

between any of the filial populations within the same inbred line. 544 

(B) Individual multi-locus genotypes of worms from Hco3(ISE),  MHco3.N1.F1  and MHco3.N2.F1 545 

populations shown on a PCA plot as black triangles, green diamonds and red squares respectively.  546 



 

The individual founding N1 and N2 female parental multi locus genotypes are shown as a larger 547 

green diamond, or red square, respectively, and indicated by an arrow. 548 

The individual worm multilocus genotypes of worms from the two inbred populations 549 

formed much tighter clusters than those from the founding MHco3(ISE) population.  The clusters of 550 

for each inbred line were completely separate to each other and centred around the position of the 551 

multilocus genotype their respective N1 and N2 individual founder female parents on the PCA plot. 552 

 553 

Supplementary Fig. S2.  SSCP polyacrylamide gels.  554 

(A) Gel comparing polymorphisms in GluClα (lanes 1 – 4), GluClβ (lanes 6 – 9) and GABA Cl (lanes 11 555 

– 14) subunits of four individual adult MHco3(ISE) H. contortus (1.5 mM MgSO4 and 5 μl of PCR 556 

product run on gel).  Each of the MHco3(ISE) H. contortus has a different GABA Cl SSCP genotype.  557 

(B) A polyacrylamide gel showing the GABA Cl SSCP genotypes of a MHco3(ISE) female head (lane 17) 558 

and L3 progeny (lanes 1, 2, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16 and 19) from eggs hatched to L1 in RPMI 559 

in the well of a 24 well plate, and then grown to L3 in the same well on E. coli and filter paper.  560 

Amplified PCR product was not seen on an agarose gel corresponding with lanes 3, 4, 8 and 9, while 561 

lane 18 is a negative control.  Different SSCP genotypic profiles are labelled A – E. 562 

 563 

Supplementary Fig. S3. GABA Cl subunit HG1 SSCP profiles.  564 

(A) Polyacrylamide gels showing a high level of polymorphism in MHco3(ISE) H. contortus.  Each lane 565 

shows the SSCP GABA Cl subunit HG1 genotype of an individual L3.  566 

(B) Polyacrylamide gels showing the GABA Cl SSCP genotypes of the N1 female (lanes 5, 15, 25 and 567 

35) and of individual MHco3.N1.F1 L1 (lanes 1, 2, 4. 6 – 14, 16 – 19, 21, 23, 24, 26 – 32, 34, and 36 – 568 

40).  569 

(C) Polyacrylamide gels showing the GABA Cl SSCP genotypes of MHco3.N1.F2 L3.   570 

Although the assignment of alleles from SSCP profiles is often ambiguous, the SSCP profile of 571 

the founding N1 female parent was entirely consistent with those of the F1 and F2 progeny (data not 572 

shown). 573 

 574 

Supplementary Fig. S4. Genomic analysis of allele frequency and nucleotide diversity. 575 

(A) Histogram of minor allele frequencies for MHco3(ISE) and MHco3.N1 inbred line based on 576 

genome sequencing data, based on counts of reads supporting each of two alleles at all biallelic sites 577 

in each sequencing library. 578 



 

(B) Nucleotide diversity estimates for 537 sites on scaffold 1 of the H. contortus v1.0 assembly 579 

polymorphic in both MHco3 (ISE) and MHco3.N1. The dashed line represents equal diversity in the 580 

pools of worms from each population, the solid line is the best-fit linear regression through the 581 

origin, with the 95% confidence interval for this fit shaded.  582 
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