1,704 research outputs found

    On the Expressivity and Applicability of Model Representation Formalisms

    Get PDF
    A number of first-order calculi employ an explicit model representation formalism for automated reasoning and for detecting satisfiability. Many of these formalisms can represent infinite Herbrand models. The first-order fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism used in the approximation refinement calculus. Our first result is a finite model property for MSLH clause sets. Therefore, MSLH clause sets cannot represent models of clause sets with inherently infinite models. Through a translation to tree automata, we further show that this limitation also applies to the linear fragments of implicit generalizations, which is the formalism used in the model-evolution calculus, to atoms with disequality constraints, the formalisms used in the non-redundant clause learning calculus (NRCL), and to atoms with membership constraints, a formalism used for example in decision procedures for algebraic data types. Although these formalisms cannot represent models of clause sets with inherently infinite models, through an additional approximation step they can. This is our second main result. For clause sets including the definition of an equivalence relation with the help of an additional, novel approximation, called reflexive relation splitting, the approximation refinement calculus can automatically show satisfiability through the MSLH clause set formalism.Comment: 15 page

    Perfectionism and self-conscious emotions in British and Japanese students: Predicting pride and embarrassment after success and failure

    Get PDF
    Regarding self-conscious emotions, studies have shown that different forms of perfectionism show different relationships with pride, shame, and embarrassment depending on success and failure. What is unknown is whether these relationships also show cultural variations. Therefore, we conducted a study investigating how self-oriented and socially prescribed perfectionism predicted pride and embarrassment after success and failure comparing 363 British and 352 Japanese students. Students were asked to respond to a set of scenarios where they imagined achieving either perfect (success) or flawed results (failure). In both British and Japanese students, self-oriented perfectionism positively predicted pride after success and embarrassment after failure whereas socially prescribed perfectionism predicted embarrassment after success and failure. Moreover, in Japanese students, socially prescribed perfectionism positively predicted pride after success and self-oriented perfectionism negatively predicted pride after failure. The findings have implications for our understanding of perfectionism indicating that the perfectionism–pride relationship not only varies between perfectionism dimensions, but may also show cultural variations

    Identification and characterization of an inhibitory fibroblast growth factor receptor 2 (FGFR2) molecule, up-regulated in an Apert Syndrome mouse model

    Get PDF
    AS (Apert syndrome) is a congenital disease composed of skeletal, visceral and neural abnormalities, caused by dominant-acting mutations in FGFR2 [FGF (fibroblast growth factor) receptor 2]. Multiple FGFR2 splice variants are generated through alternative splicing, including PTC (premature termination codon)-containing transcripts that are normally eliminated via the NMD (nonsense-mediated decay) pathway. We have discovered that a soluble truncated FGFR2 molecule encoded by a PTC-containing transcript is up-regulated and persists in tissues of an AS mouse model. We have termed this IIIa–TM as it arises from aberrant splicing of FGFR2 exon 7 (IIIa) into exon 10 [TM (transmembrane domain)]. IIIa–TM is glycosylated and can modulate the binding of FGF1 to FGFR2 molecules in BIAcore-binding assays. We also show that IIIa–TM can negatively regulate FGF signalling in vitro and in vivo. AS phenotypes are thought to result from gain-of-FGFR2 signalling, but our findings suggest that IIIa–TM can contribute to these through a loss-of-FGFR2 function mechanism. Moreover, our findings raise the interesting possibility that FGFR2 signalling may be a regulator of the NMD pathway

    Tilt order parameters, polarity and inversion phenomena in smectic liquid crystals

    Full text link
    The order parameters for the phenomenological description of the smectic-{\it A} to smectic-{\it C} phase transition are formulated on the basis of molecular symmetry and structure. It is shown that, unless the long molecular axis is an axis of two-fold or higher rotational symmetry, the ordering of the molecules in the smectic-{\it C} phase gives rise to more than one tilt order parameter and to one or more polar order parameters. The latter describe the indigenous polarity of the smectic-{\it C} phase, which is not related to molecular chirality but underlies the appearance of spontaneous polarisation in chiral smectics. A phenomenological theory of the phase transition is formulated by means of a Landau expansion in two tilt order parameters (primary and secondary) and an indigenous polarity order parameter. The coupling among these order parameters determines the possibility of sign inversions in the temperature dependence of the spontaneous polarisation and of the helical pitch observed experimentally for some chiral smectic-{\it CC^{\ast}} materials. The molecular interpretation of the inversion phenomena is examined in the light of the new formulation.Comment: 12 pages, 5 figures, RevTe

    Importance of heterogeneity in Porhyromonas gingivalis lipopolysaccharide lipid A in tissue specific inflammatory signaling

    Get PDF
    Lipopolysaccharide (LPS) of Porphyromonas gingivalis exists in at least two known forms, O-LPS and A-LPS. A-LPS shows heterogeneity in which two isoforms designated LPS1435/1449 and LPS1690 appear responsible for tissue specific immune signalingpathways activation and increased virulence. The modification of lipid A to tetra-acylated1435/1449 and/or penta-acylated1690 fatty acids indicates poor growth conditions and bioavailability of hemin. Hemin protects P. gingivalis from serum resistance and the lipid A serves as a site for its binding. The LPS1435/1449 and LPS1690 isoforms can produce opposite effects on the human Toll-like receptors (TLR) TLR 2 and TLR 4 activation. This enabless P. gingivalis to select the conditions for its entry, survival and that of its co-habiting species in the host, orchestrating its virulence to control innate immune pathway activation and biofilm dysbiosis. Thismini review describes a number of effects that LPS1435/1449 and LPS1690 can exert on the host tissues such as deregulation of the innate immune system, subversion of host cell autophagy, regulation of outer membrane vesicle production and adverse effects on pregnancy outcome. The ability to change its LPS1435/1449 and/or LPS1690 composition may enables P. gingivalis to paralyze local pro-inflammatory cytokine production, thereby gaining access to its primary location in periodontal tissue

    Possible Associations of NTRK2 Polymorphisms with Antidepressant Treatment Outcome: Findings from an Extended Tag SNP Approach

    Get PDF
    Background: Data from clinical studies and results from animal models suggest an involvement of the neurotrophin system in the pathology of depression and antidepressant treatment response. Genetic variations within the genes coding for the brain-derived neurotrophic factor (BDNF) and its key receptor Trkb (NTRK2) may therefore influence the response to antidepressant treatment. Methods: We performed a single and multi-marker association study with antidepressant treatment outcome in 398 depressed Caucasian inpatients participating in the Munich Antidepressant Response Signature (MARS) project. Two Caucasian replication samples (N = 249 and N = 247) were investigated, resulting in a total number of 894 patients. 18 tagging SNPs in the BDNF gene region and 64 tagging SNPs in the NTRK2 gene region were genotyped in the discovery sample; 16 nominally associated SNPs were tested in two replication samples. Results: In the discovery analysis, 7 BDNF SNPs and 9 NTRK2 SNPs were nominally associated with treatment response. Three NTRK2 SNPs (rs10868223, rs1659412 and rs11140778) also showed associations in at least one replication sample and in the combined sample with the same direction of effects (PcorrP_{corr} = .018, PcorrP_{corr} = .015 and PcorrP_{corr} = .004, respectively). We observed an across-gene BDNF-NTRK2 SNP interaction for rs4923468 and rs1387926. No robust interaction of associated SNPs was found in an analysis of BDNF serum protein levels as a predictor for treatment outcome in a subset of 93 patients. Conclusions/Limitations: Although not all associations in the discovery analysis could be unambiguously replicated, the findings of the present study identified single nucleotide variations in the BDNF and NTRK2 genes that might be involved in antidepressant treatment outcome and that have not been previously reported in this context. These new variants need further validation in future association studies

    Clinical outcomes of donation after circulatory death liver transplantation in primary sclerosing cholangitis

    Get PDF
    Background & Aim: Primary sclerosing cholangitis (PSC) is a progressive fibro-inflammatory cholangiopathy for which liver transplantation is the only life-extending intervention. These patients may benefit from accepting liver donation after circulatory death (DCD), however their subsequent outcome is unknown. The aim of this study was to determine the clinical impact of using DCD liver grafts in patients specifically undergoing transplantation for PSC. Methods: Clinical outcomes were prospectively evaluated in PSC patients undergoing transplantation from 2006 to 2016 stratified by donor type (DCD, n = 35 vs. donation after brainstem death [DBD], n = 108). Results: In liver transplantation for PSC; operating time, days requiring critical care support, total ventilator days, incidence of acute kidney injury, need for renal replacement therapy (RRT) or total days requiring RRT were not significantly different between DCD vs. DBD recipients. Although the incidence of ischaemic-type biliary lesions was greater in the DCD group (incidence rate [IR]: 4.4 vs. 0 cases/100-patient-years; p <0.001) there was no increased risk of post-transplant biliary strictures overall (hazard ratio [HR]: 1.20, 0.58–2.46; p = 0.624), or in sub-analysis specific to anastomotic strictures or recurrent PSC, between donor types. Graft loss and mortality rates were not significantly different following transplantation with DCD vs. DBD livers (IR: 3.6 vs. 3.1 cases/100-patient-years, p = 0.34; and 3.9 vs. 4.7, p = 0.6; respectively). DCD liver transplantation in PSC did not impart a heightened risk of graft loss (HR: 1.69, 0.58–4.95, p = 0.341) or patient mortality (0.75, 0.25–2.21, p = 0.598). Conclusion: Transplantation with DCD (vs. DBD) livers in PSC patients does not impact graft loss or patient survival. In an era of organ shortage, DCD grafts represent a viable therapeutic option for liver transplantation in PSC patients. Lay summary: This study examines the impact of liver transplantation in primary sclerosing cholangitis (PSC) with organs donated after circulatory death (DCD), compared to donation after brainstem death (DBD). We show that in appropriately selected patients, the outcomes for DCD transplantation mirror those using DBD livers, with no significant differences in complication rate, patient survival or transplanted liver survival. In an era of organ shortage and increasing wait-list times, DCD livers represent a potential treatment option for transplantation in PSC

    Nanotools for Neuroscience and Brain Activity Mapping

    Get PDF
    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function

    Positive and negative affect, related mental health traits, and cognitive performance: shared genetic architecture and potential causality

    Get PDF
    Altered affect and cognitive dysfunction are transdiagnostic, burdensome, and pervasive features of many psychiatric conditions which remain poorly understood and have few efficacious treatments. Research on the genetic architecture of these phenotypes and causal relationships between them may provide insight into their aetiology and comorbidity. Using data from the Lifelines Cohort Study, we conducted genome-wide association studies (GWAS) on positive and negative affect and four cognitive domains (working memory, reaction time, visual learning and memory, executive function). Using publicly available large GWAS on related - albeit distinct- phenotypes (depression, anxiety, wellbeing, general cognitive ability [GCA]) we conducted genetic correlation and Mendelian randomization (MR) analyses to examine genetic overlap and causal relationships. We identified one genome-wide hit (p<5x10-8) for reaction time, and many loci with suggestive associations (p<5x10-6; N range= 11-20 independent hits) for other phenotypes. For most phenotypes, gene mapping and tissue expression analysis of suggestive hits from the GWAS showed increased gene expression in brain tissue compared to other tissues. As predicted, negative affect is genetically correlated with mental health phenotypes (depression rg=0.51; anxiety rg=0.70; wellbeing rg=-0.71) and cognitive domains are genetically correlated with GCA and brain volume (rg≤0.66). Genetic correlations between negative and positive affect suggest that they are dissociable constructs (rg=-0.18) with negative affect having higher genetic overlap with GCA than positive affect (rg=-0.19 vs -0.06). This could indicate that negative affect has a higher shared neural basis with GCA than positive affect and/or GCA and negative affect may exhibit causal relationships. MR analyses suggest potential causal effects of higher GCA on reduced negative affect, reduced risk of depression and anxiety, and higher wellbeing, but little impact on positive affect. We also report evidence for potential causal effects of depression and lower wellbeing on reduced GCA. Taken together, these results suggests that GCA may be a valid target for negative affect (but not positive affect) and depression and wellbeing may be valid targets for GCA
    corecore