10 research outputs found

    Bartonella Adhesin A Mediates a Proangiogenic Host Cell Response

    Get PDF
    Bartonella henselae causes vasculoproliferative disorders in humans. We identified a nonfimbrial adhesin of B. henselae designated as Bartonella adhesin A (BadA). BadA is a 340-kD outer membrane protein encoded by the 9.3-kb badA gene. It has a modular structure and contains domains homologous to the Yersinia enterocolitica nonfimbrial adhesin (Yersinia adhesin A). Expression of BadA was restored in a BadA-deficient transposon mutant by complementation in trans. BadA mediates the binding of B. henselae to extracellular matrix proteins and to endothelial cells, possibly via ÎČ1 integrins, but prevents phagocytosis. Expression of BadA is crucial for activation of hypoxia-inducible factor 1 in host cells by B. henselae and secretion of proangiogenic cytokines (e.g., vascular endothelial growth factor). BadA is immunodominant in B. henselae–infected patients and rodents, indicating that it is expressed during Bartonella infections. Our results suggest that BadA, the largest characterized bacterial protein thus far, is a major pathogenicity factor of B. henselae with a potential role in the induction of vasculoproliferative disorders

    The α-proteobacteria: the Darwin finches of the bacterial world

    No full text
    The α-proteobacteria represent one of the most diverse bacterial subdivisions, displaying extreme variations in lifestyle, geographical distribution and genome size. Species for which genome data are available have been classified into a species tree based on a conserved set of vertically inherited core genes. By mapping the variation in gene content onto the species tree, genomic changes can be associated with adaptations to specific growth niches. Genes for adaptive traits are mostly located in ‘plasticity zones’ in the bacterial genome, which also contain mobile elements and are highly variable across strains. By physically separating genes for information processing from genes involved in interactions with the surrounding environment, the rate of evolutionary change can be substantially enhanced for genes underlying adaptation to new growth habitats, possibly explaining the ecological success of the α-proteo-bacterial subdivision

    Comment on "A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea"

    No full text
    Berg et al. (Reports, 14 December 2007, p. 1782) reported the discovery of an autotrophic carbon dioxide-fixation pathway in Archaea and implicated a substantial role of this pathway in global carbon cycling based on sequence analysis of Global Ocean Sampling data. We question the validity of the latter claim.</p

    Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade

    No full text
    The SAR11 clade, here represented by Candidatus Pelagibacter ubique, is the most successful group of bacteria in the upper surface waters of the oceans. In contrast to previous studies that have associated the 1.3 Mb genome of Ca. Pelagibacter ubique with the less than 1.5 Mb genomes of the Rickettsiales, our phylogenetic analysis suggests that Ca. Pelagibacter ubique is most closely related to soil and aquatic Alphaproteobacteria with large genomes. This implies that the SAR11 clade and the Rickettsiales have undergone genome reduction independently. A gene flux analysis of 46 representative alphaproteobacterial genomes indicates the loss of more than 800 genes in each of Ca. Pelagibacter ubique and the Rickettsiales. Consistent with their different phylogenetic affiliations, the pattern of gene loss differs with a higher loss of genes for repair and recombination processes in Ca. Pelagibacter ubique as compared with a more extensive loss of genes for biosynthetic functions in the Rickettsiales. Some of the lost genes in Ca. Pelagibacter ubique, such as mutLS, recFN, and ruvABC, are conserved in all other alphaproteobacterial genomes including the small genomes of the Rickettsiales. The mismatch repair genes mutLS are absent from all currently sequenced SAR11 genomes and also underrepresented in the global ocean metagenome data set. We hypothesize that the unique loss of genes involved in repair and recombination processes in Ca. Pelagibacter ubique has been driven by selection and that this helps explain many of the characteristics of the SAR11 population, such as the streamlined genomes, the long branch lengths, the high recombination frequencies, and the extensive sequence divergence within the population.</p

    Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics

    Get PDF
    Little is known about the diversity and structuring of freshwater microbial communities beyond the patterns revealed by tracing their distribution in the landscape with common taxonomic markers such as the ribosomal RNA. To address this gap in knowledge, metagenomes from temperate lakes were compared to selected marine metagenomes. Taxonomic analyses of rRNA genes in these freshwater metagenomes confirm the previously reported dominance of a limited subset of uncultured lineages of freshwater bacteria, whereas Archaea were rare. Diversification into marine and freshwater microbial lineages was also reflected in phylogenies of functional genes, and there were also significant differences in functional beta-diversity. The pathways and functions that accounted for these differences are involved in osmoregulation, active transport, carbohydrate and amino acid metabolism. Moreover, predicted genes orthologous to active transporters and recalcitrant organic matter degradation were more common in microbial genomes from oligotrophic versus eutrophic lakes. This comparative metagenomic analysis allowed us to formulate a general hypothesis that oceanic- compared with freshwater-dwelling microorganisms, invest more in metabolism of amino acids and that strategies of carbohydrate metabolism differ significantly between marine and freshwater microbial communities.This work was supported by the Swedish Foundation for Strategic Research (Grant Number ICA10-0015 to AE), the Swedish Research Council (Grant Numbers 349-2007-831, 621-2008-3259 and 621-2011-4669 to SGEA; 2009-3784, 2008-1923 and 2012-3892 to SB), the National Science Foundation [Awards CBET-0644949 (CAREER), MCB-0702653 (Microbial Observatories Program) to KD and DEB-841933 to RS], DEB-0822700 (Long Term Ecological Research, NTL LTER to KDM), the European Union (grant to SGEA), the Göran Gustafsson Foundation (grant to SGEA), the Knut and Alice Wallenberg Foundation (Grant Numbers KAW-2011.0148 and KAW-2012.0075 to SGEA), and the Swedish Wennergren Foundation (to KDM and SB)

    The genomic and metabolic diversity of Rickettsia

    No full text
    Comparative genomics of Rickettsia and Orientia has revealed an exciting interplay between reductive evolutionary forces acting on metabolic genes in all species and proliferation of mobile genetic elements in some species. These contradictory evolutionary forces highlight the influence of chance, adaptation and host-cell exploitation during the evolution of intracellular bacteria

    Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution

    No full text
    The bacterial family Rickettsiaceae includes a group of well-known etiological agents of many human and vertebrate diseases, including epidemic typhus-causing pathogen Rickettsia prowazekii. Owing to their medical relevance, rickettsiae have attracted a great deal of attention and their host-pathogen interactions have been thoroughly investigated. All known members display obligate intracellular lifestyles, and the best-studied genera, Rickettsia and Orientia, include species that are hosted by terrestrial arthropods. Their obligate intracellular lifestyle and host adaptation is reflected in the small size of their genomes, a general feature shared with all other families of the Rickettsiales. Yet, despite that the Rickettsiaceae and other Rickettsiales families have been extensively studied for decades, many details of the origin and evolution of their obligate host-association remain elusive. Here we report the discovery and single-cell sequencing of 'Candidatus Arcanobacter lacustris', a rare environmental alphaproteobacterium that was sampled from Damariscotta Lake that represents a deeply rooting sister lineage of the Rickettsiaceae. Intriguingly, phylogenomic and comparative analysis of the partial 'Candidatus Arcanobacter lacustris' genome revealed the presence chemotaxis genes and vertically inherited flagellar genes, a novelty in sequenced Rickettsiaceae, as well as several host-associated features. This finding suggests that the ancestor of the Rickettsiaceae might have had a facultative intracellular lifestyle. Our study underlines the efficacy of single-cell genomics for studying microbial diversity and evolution in general, and for rare microbial cells in particular.</p
    corecore