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Summary

Little is known about the diversity and structuring of
freshwater microbial communities beyond the pat-
terns revealed by tracing their distribution in the land-
scape with common taxonomic markers such as the
ribosomal RNA. To address this gap in knowledge,
metagenomes from temperate lakes were compared
to selected marine metagenomes. Taxonomic analy-
ses of rRNA genes in these freshwater metagenomes
confirm the previously reported dominance of a
limited subset of uncultured lineages of freshwater
bacteria, whereas Archaea were rare. Diversification
into marine and freshwater microbial lineages was
also reflected in phylogenies of functional genes, and
there were also significant differences in functional
beta-diversity. The pathways and functions that
accounted for these differences are involved in
osmoregulation, active transport, carbohydrate and
amino acid metabolism. Moreover, predicted genes
orthologous to active transporters and recalcitrant
organic matter degradation were more common
in microbial genomes from oligotrophic versus
eutrophic lakes. This comparative metagenomic

analysis allowed us to formulate a general hypothesis
that oceanic- compared with freshwater-dwelling
microorganisms, invest more in metabolism of amino
acids and that strategies of carbohydrate metabolism
differ significantly between marine and freshwater
microbial communities.

Introduction

Lakes are systems of enhanced biological activity and are
central to many biogeochemical processes (Battin et al.,
2009; Tranvik et al., 2009). Lakes also represent a critical
natural resource for human societies (Downing et al.,
2006). Although bacteria are known to perform many criti-
cal biogeochemical processes and thus also have the
potential to modify and control water quality in these eco-
systems, we have limited understanding of their functional
potential, genetic variability and community interactions.
This is partly because most abundant lake bacteria are
notoriously difficult to culture in isolation (Newton et al.,
2011). The first sequenced genomes of abundant fresh-
water bacteria (Garcia et al., 2012; Hahn et al., 2012) and
recent metagenomic characterization of microorganisms
from Lake Gatun (Rusch et al., 2007), Lac du Bourget
(Debroas et al., 2009) and Lake Lanier (Oh et al., 2011)
have provided some first snapshots of the functional
diversity of freshwater bacterioplankton in single lake eco-
systems. These studies have corroborated findings based
on 16S rRNA amplicon surveys with regards to the com-
position of freshwater bacterial communities and the
existence of a phylogenetically distinct freshwater
microbiota (reviewed in Newton et al., 2011). Neverthe-
less, because of the often substantial genomic variation
among even closely related strains, it is challenging to
predict community metabolism solely from taxonomic
markers and the often rather limited metabolic and func-
tional information derived from reference isolates.

In contrast with such marker gene approaches,
metagenomic analysis has the potential to summarize the
combined genetic blueprint of all organisms in a given
community (Riesenfeld et al., 2004). By sequencing all
genetic information in a community, the relative abun-
dance of all represented genes can, at least in theory, be
determined and used to provide a synoptic description of
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the functional potential of communities under scrutiny (i.e.
Fierer et al., 2007; Rusch et al., 2007; Debroas et al.,
2009; Oh et al., 2011). By annotating and comparing
multiple such data sets, differences in the metabolic
profiles across environments can furthermore be identi-
fied (Dinsdale et al., 2008), and it is also possible to
identify specific genomic adaptations to life in contrasting
habitats. Such metagenomic studies have previously
revealed significant relationships between the environ-
mental conditions and the functional composition of
microbial communities in a wide range of habitats (Tringe
et al., 2005; DeLong et al., 2006; Dinsdale et al., 2008;
Kunin et al., 2008; Gianoulis et al., 2009; Raes et al.,
2011) including a first comparison between metagenomes
from freshwater lake and marine samples (Oh et al.,
2011).

Here, we use metagenomic sequence data from marine
and freshwater systems to identify general differences in
functional gene profiles and the variability in metabolic
profiles among lakes of different trophic status. Compara-
tive analyses of freshwater bacterial communities based
on taxonomic markers have previously revealed differ-
ences in bacterial community composition across trophic
gradients, where specific lineages respond either posi-
tively or negatively to high productivity (Kolmonen et al.,
2011). Microbial community structure is not only deter-
mined by environmental characteristics (Newton et al.,
2011) and contemporary biotic interactions (Eiler et al.,
2012) but also by a complex combination of historical
factors such as dispersal limitation, past environmental
conditions and evolution (Martiny et al., 2006). In com-
parison with oceans, inland waters are much more directly
influenced by the surrounding terrestrial landscape and
coupled to inputs of organisms and chemical constituents
from the catchment. Such external influences are likely to
have a profound influence on the phylogenetic composi-
tion of bacterioplankton communities (see for example
Lindström, 2000; Lindström et al., 2005; Yannarell and

Triplett, 2005; Eiler and Bertilsson, 2007; Newton et al.,
2011; Peura et al., 2012).

To better understand factors controlling and shaping
the community-level functional traits of freshwater
microplankton, nine planktonic DNA samples from seven
different lakes were analysed by pyrosequencing-enabled
metagenomics. In addition, three available freshwater
metagenome data sets from National Center for Biotech-
nology Information-Short Read Archive (NCBI-SRA) were
included in the analysis, resulting in a combined freshwa-
ter data set from altogether 12 freshwater metagenomes.
As marine references, we used 13 marine metagenomes
comprising samples from the open and coastal ocean.
One further aim was to corroborate that lake systems
are not only different from marine systems in their
phylogenetic but also in their functional gene composition.
By comparing lakes of contrasting productivity, we further
aimed at revealing functional differences related to
nutrient and energy acquisition as well as substrate
preferences.

Results and discussion

General description of the sampling sites and
sequence data

DNA samples were collected from seven lakes,
whereof two lakes were sampled twice (in Spring and
Summer) (Table 1). These nine samples were subject to
whole-community genome shotgun 454 pyrosequencing
using Titanium chemistry. An additional three fresh-
water lake metagenomes and 13 marine metagenomes
were obtained from public databases. The latter included
samples from open-ocean and coastal habitats
(Table S1). We selected these 16 metagenomes available
at the time of analysis because they were of sufficient size
to be compared with our data and processed in the most
similar fashion to the nine new freshwater metagenomes
with regards to sample handling, DNA extraction, library

Table 1. Description of lakes used in this study.

ID Sample location Country Date Location
Sample
depth T (°C)

Size fraction
(μm) Habitat type Tot P

DamariscottaSP Lake Damariscotta USA 20090528 44°10′n; 69°29′w 0.5–1 12.1 > 0.2 Mesotrophic lake 10
DamariscottaSU Lake Damariscotta USA 20090819 44°10′n; 69°29′w 0.5–1 12.1 > 0.2 Mesotrophic lake 10
Ekoln Lake Ekoln Sweden 20070731 59°45′n; 17°36′e 0–2 19.0 0.2–100 Eutrophic lake 50
Erken Lake Erken Sweden 20070620 59°25′n; 18°15′e 0–2 18.7 0.2–100 Mesotrophic lake 33
Lanier Lake Lanier USA 20090827 34°12′n; 83°59′w 0–5 28.5 0.22–1.6 Mesotrophic lake 30
MendotaSP Lake Mendota USA 20090512 43° 6′n; 89°24′w 0.5–1 12.68 > 0.2 Eutrophic lake 118
MendotaSU Lake Mendota USA 20090823 43° 6′n; 89°24′w 0.5–1 23.07 > 0.2 Eutrophic lake 100
Spark Sparkling Lake USA 20090528 46° 0′n; 89°42′w 0.5–1 13.97 > 0.2 Oligotrophic lake 0.3
Trout Trout Bog Lake USA 20090528 46° 2′n; 89°41′w 0.5–1 20.71 > 0.2 Dysotrophic lake 7.8
Vattern Lake Vättern Sweden 20070717 58°24′n; 14°36′e 0–2 17.0 0.2–100 Oligotrophic lake 3
Yellowstone1 Yellowstone Lake USA 20080916 44°28′n; 110°22′w 0–2 46 0.1–0.8 Eutrophic lake 80
Yellowstone2 Yellowstone Lake USA 20080915 44°28′n; 110°22′w 0–2 12.3 0.1–0.8 Eutrophic lake 80

Tot P, total phosphorus concentration (μg l−1); T, temperature.
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preparation and sequencing. Still, we want to make the
reader aware that they were not processed in an identical
way, which might influence the comparison and our inter-
pretations (Carrigg et al., 2007). In addition, with the
limited number of samples and shallow sequencing at
hand, we can never cover the entire functional diversity
dwelling in both marine and freshwater biomes, and this
adds some uncertainties to generalizations of the major
findings from this study.

The nine lakes included in the analysis represent a
wide range of trophic states, including oligotrophic,
mesotrophic and eutrophic systems (Table 1). They range
from 0.3 to 120 μg l−1 in total phosphorus (TP) and are all
situated in the temperate climate zone. On average,
325 000 high-quality reads with mean length of 330 bp
were obtained for the lake metagenomes and slightly
lower numbers of 280 000 sequences with mean read
length of 270 bp for the marine data sets. No quality files
were available for the marine data sets, but quality filtering
(mean read quality > 21) affected the lake metagenomes
very little (1–2% for two data sets, 0% for the majority). To
match the quality filtering step as best possible, marine
metagenomes had an extra upper length filter added
because many long sequences were observed to be of
poor quality. Lower length limit (> 150 bp) and clustering
to remove artefacts were performed in the same way on
all data sets, resulting in over 8.2 million reads in total
(Table 2; for detail about the removed sequences in the
preprocessing steps, see Table S2). Five samples yielded
much lower total sequenced nucleotides than average
(84%): marine sample from Sargasso Sea (depth 40 m,
67%) and four lake samples from Yellowstone Lake
(sample 1, 79%), Lake Mendota (spring sample, 76%),
Trout-Bog Lake (75%) and Sparkling Lake (58%). These
samples were also among the most extreme outliers in
terms of the eukaryotic content. To ensure robustness
of the results, the impact of including/excluding those
samples from the statistical analyses was investigated.

In order to investigate the genomic similarity between
and within freshwater and marine samples, DNA
sequences were first evaluated for features that did not a
priori require any taxonomic or functional annotation.
Sequences were evaluated for Guanine and Cytosine
(GC) content, isoelectric point and amino-acid usage. The
GC content of the freshwater metagenome samples was
46.6% on the average (Table 2), ranging from 35% to 60%
for the large majority of reads in each of the individual
samples (Fig. S1). This was not significantly different to
the average GC content of the marine metagenome
samples (Wilcoxon test; P = 0.406) where for example the
Sargasso Sea samples (46.6–48.6% on the average) had
higher GC content than the Western English Channel
(below 40%). The isoelectric points were not significantly
different (Wilcoxon test; P = 0.624) between freshwater

and marine metagenomes using Open Reading Frames
(ORFs) of at least 50 aa in length predicted from six frame
translation procedures (Table 2). Nor did the inferred
amino acid usage differ between marine and freshwater
samples [permutational multivariate analysis of variance
(PERMANOVA); P = 0.432]. Specifically, we observed no
difference in the usage of sulphur-containing amino acids,
methionine and cysteine, for which an increased cost
could be expected in freshwater environments. Hence,
there was no convincing evidence for ‘elemental sparing’,
which has been described as adaptive selection pressure
on amino acid usage when cellular maintenance costs for
protein synthesis are assumed to affect fitness (Bragg
and Wagner, 2009).

Taxonomic composition

The microbial diversity captured in the metagenomic
sequences from the 25 different metagenomes was ana-
lysed using rRNA hidden Markov models (hmm) and
tblastx against Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING). Identification and analysis of
rRNA genes with hmm identified 16 743 small subunit
(SSU) rRNA hits, applying an e-value cut-off of 1e-10 for
a hit (Table 2). From these, 33% were of bacterial origin,
whereas 2.2% and 0.6% were annotated to eukaryotes
and archaea, respectively, with the rest being unclassified
(64%) using the SILVA database (Quast et al., 2013) in
combination with the naïve Bayesian classifier (Wang
et al., 2007). Two lake metagenomes (Spring sample
from Lake Mendota and Trout Bog Lake) had more than
20% of eukaryotic (18S rRNA) reads annotated as
mainly algal-derived. Comparing marine and freshwater
metagenomes, archaeal 16S rRNA were more common
in marine systems (on average, 3.8% of the annotated
SSUs in the marine vs. 0.4% in the freshwater
metagenomes) when compared with freshwaters where
the proportion of eukaryotic 18S rRNA hits was higher (on
average, 3.2% of the annotated SSUs in the marine vs.
10.2% in the freshwater metagenomes). Possible expla-
nations are upwelling events at marine sites that may
contribute Archaea to surface communities, but also
general physicochemical differences between marine and
freshwaters could select for the observed patterns. The
taxonomic composition of bacteria in each individual
sample was also determined by annotating 16S rRNA
genes using a custom curated freshwater database
(Newton et al., 2011) (Fig. 1A). Whatever database used,
Proteobacteria was the dominant bacterial phylum in all
marine metagenomes. Conversely, all but five of the
lake metagenomes instead featured Actinobacteria as
the most abundant phylum. In marine environments,
alpha-Proteobacteria was the dominant class within
the Proteobacteria, whereas beta-Proteobacteria were
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more abundant in freshwaters. Other abundant phyla
in the lakes were Verrucomicrobia, Planctomycetes,
Cyanobacteria, and Bacteroidetes. Furthermore, we
observed significant differences between marine and
freshwater metagenomes in community composition ana-
lysed at the phylum level (PERMANOVA, R2 = 0.34,
P < 0.001). Resolving sequences to a finer taxonomic
level (roughly comparable with genus-level) revealed a
dominance of previously identified typical freshwater bac-
teria in the 12 lake samples, including the freshwater
SAR11 (LD12), taxa within the Actinobacterial acI lineage
(acI-B1, acI-A6, acI-C2) and the beta-Proteobacterial
Polynucleobacter (Fig. 1A; Newton et al., 2011). Moreo-
ver, this reflects previously described patterns between
systems of different trophic status where dystrophic
(humic) systems such as Trout Bog Lake are lacking most
typical freshwater taxa (Peura et al., 2012).

Using the taxonomic annotations of the best tblastx hit
to STRING revealed patterns highly similar to that of the
SSU rRNA taxonomy where hits to bacteria dominated
(on average 92%) over hits matching archaea (2%) and
eukarya (7.6%) (Fig. S2). As for most metagenomes, the
dominant portion of the reads had no hits (on average
60% for the lake and 71% for the marine data sets) in the
STRING database and could thus not be taxonomically
assigned. Still, comparing freshwater and marine
metagenomes revealed that hits to the bacterial phylum
Actinobacteria were more abundant in freshwater
metagenomic libraries (on average 31%) compared with
marine metagenomes where hits to Proteobacteria, espe-
cially alpha-Proteobacteria, were dominant (on average,
38%; see Fig. 1B), thus corroborating observations made
at the SSU rRNA level. Other prominent (sub)phyla in
the freshwater metagenomes were beta-Proteobacteria
(on average 24%), Bacteroidetes (on average 10%),
Cyanobacteria (on average 21%), Verrucomicrobia/
Chlamydia (on average 3%) and Planctomycetes (on
average 2%). Overall, the metagenomic comparison
revealed taxonomic distributions as expected from previ-
ous studies based on clone libraries (i.e. Zwart et al.,
2002; Eiler and Bertilsson, 2004) and fluorescence in situ
hybridization (Glöckner et al., 1999).

Comparative functional metagenomics between marine
and freshwater systems

Functional assignment was made on the basis of the best
tblastx cluster of orthologous genes (COGs) hit using an
E-value threshold of 1e−10. To assure the best available
taxonomic representation, the STRING database was
used (Franceschini et al., 2013), as it comprises over
1000 genomes of bacteria, archaea and eukaryota com-
pared with 66 genomes in the original COG database. The
average percentage of the reads that could be annotated

(had a COG annotation) was 37% for lake and 25% for
marine metagenomes (range 19–50% per sample). The
total number of annotations (COGs) per sample ranged
from about 14 500 to almost 400 000 (Table 2). The rela-
tive abundance of best hits assigned to each major sub-
system (orthologous gene classes, OGCs) in the marine
versus freshwater system is summarized in Table 3,
showing that ‘Amino acid transport and metabolism’ was
the dominant OGC.

Counts for 35 marker COGs were used to approximate
the average effective genome size in freshwater and
marine microbial communities. The estimated average
effective genome size for freshwaters (1.91) was slightly
higher than for the selected marine systems (1.33, Table 2)
(Wilcoxon test; P < 0.003) where the latter estimates are
similar to previous estimates for marine plankton (Raes
et al., 2007; Quaiser et al., 2011). These findings corrobo-
rate the widespread assumption that small and stream-
lined genomes are a more common feature of bacterio-
plankton from oligotrophic sites (Giovannoni et al., 2005;
Grote et al., 2012) compared with those that reside in more
productive waters such as eutrophic freshwater lakes (i.e.
lakes Ekoln, Erken and Mendota; see also Oh et al., 2011).
Discrepancies in estimated genome sizes to previously
published estimates (Lake Lanier, our estimate 1.78 vs.
published 2.2) are most likely due to differences in data-
bases and quality filtering used.

COGs were normalized against best hits to 35 likely
essential and single copy COGs (Table S3; Ciccarelli
et al., 2006; Raes et al., 2007) without taking read length
into account prior to statistical analyses. Each of these
single copy COGs had, on average, 77 hits in the 25
metagenomes (range 11–279, representing averages
from single metagenomes). To assess whether or not
each biome had a distinct functional profile, an ordination
was conducted using an occurrence matrix of COGs in
nonmetric multidimensional scaling (metaMDS function in
R; Oksanen et al., 2008). PERMANOVA (Anderson, 2001)
corroborated the visual impression (Fig. S3) of a signifi-
cant difference in functional beta-diversity between
marine and freshwater systems (PERMANOVA;
P < 0.001, R2 = 0.34). These differences were maintained
even if low-quality metagenomes were excluded
(PERMANOVA; P < 0.001, R2 = 0.34), or when only bac-
terial COGs where analysed (PERMANOVA; P < 0.001,
R2 = 0.35) and when specific OGCs were analysed sepa-
rately (Table 3). The most pronounced difference in the
composition of OGCs was observed for the OGC ‘ion
transport and metabolism’ and ‘transcription’, whereas the
composition within OGCs ‘Cytoskeleton’ and ‘Cell motility’
were the least separated. Moreover, we also looked for
proportional differences at the level of OGC by using
Wilcoxon test. Overall, OGCs ‘energy production and
conversion’ and ‘coenzyme transport and metabolism’
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Fig. 1. Heatmap of the 20 most abundant typical freshwater taxa (A) in the metagenomics datasets as inferred from their proportion of SSU
rRNA gene sequences. Typical freshwater taxa were defined previously using a well-curated freshwater-specific phylogeny (Newton et al.,
2011). (B) Barplot showing taxonomic classification of bacterial reads into phyla based on the best hit to STRING (Franceschini et al., 2013).
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were under-represented in freshwater metagenomes,
whereas core functions involved in ‘transcription’, and
‘replication, recombination and repair’ were over-
represented when compared with marine samples
(Table 3). The higher proportion of the OGC ‘signal
transduction’ in freshwater than marine metagenomes
suggest that freshwater microbial communities feature
more complex interactions and cellular controls that may
involve cell-to-cell communication.

This was also reflected in a more detailed analysis
based on the Wilcoxon test where all COGs differing in
resampled and normalized occurrence between marine
and freshwater systems were tested. Out of 707 COGs
identified as significantly different in their prevalence
between the marine and freshwater metagenomes
(P < 0.01 and false discovery rate < 0.027), and 560 sig-
nificantly different (P < 0.01) when excluding low-quality
metagenomes, limited the list to COGs significant for both
all and best data sets to 102 COGs that were over-
represented in the marine and 295 in the freshwater
metagenomes (Fig. 2, Table S4). For example, core func-
tions belonging to ‘transcription’ such as transcriptional
regulators, for example arginine repressor (bacterial) was
significantly over-represented in lakes (P < 0.001). ‘Rep-
lication, recombination and repair’ was represented by
numerous transposases, several helicases, and the
recombination repair proteins RecF and RecB, which
were all significantly over-represented in the lake
metagenomes (all bacterial, P < 0.01). Other COGs over-
represented in freshwaters were related to a phosphorus
starvation-inducible protein phoH (cog1875, P < 0.001), a
growth inhibitor (cog2337, P < 0.002) and two response
regulators (cog3707, P < 0.001; cog4566, P < 0.001).
Homologues to subunits of archaeal polymerases such as
COG1311 (archaeal DNA polymerase II, SSU/DNA poly-
merase delta, subunit B) and COG1933 (archaeal DNA
polymerase II, large subunit) were over-represented in
marine metagenomes (P < 0.005 and P < 0.001 respec-
tively). With regards to metabolism, differences between
freshwater and marine metagenomes were limited to few
key enzymes (Fig. 2). Examples of this is the significant
over-representation of malate synthase homologues
(cog2225, P < 0.001) and isocitrate lyase (cog2224,
P < 0.002) in the marine biome, both coding for enzymes
with a central function in the glyoxylate cycle. The
isocitrate lyase catalyses the cleavage of isocitrate to
succinate and glyoxylate, and the malate synthase feeds

glyoxylate into the tricarboxylic acid cycle (TCA) via
oxalacetate (known as the glyoxylate shunt). This allows
microorganisms to utilize simple carbon compounds as a
carbon source when complex sources such as glucose
are not available. In the absence of available carbohy-
drates, the glyoxylate cycle permits the synthesis of car-
bohydrates needed for cell-wall assembly from lipids via
acetate. In contrast, reads annotated as being involved
in carbohydrate metabolism (i.e. ‘phosphoenolpyruvate-
protein kinase’ cog1080, P < 0.001; ‘Fructose-1-
phosphate kinase and related fructose-6-phosphate
kinase’ cog1105, P < 0.002) seem to be more common in
freshwater as compared with marine metagenomes,
where such genes were never significantly over-
represented. This included galactose-1-phosphate
uridylyltransferase (cog1085, P < 0.001) a putative
enzyme central to the Leloir pathway involved in the
catalyses between galactose and glucose. Another
interesting finding was that homologues of enzymes
that hydrolyse glycolipids, glycoproteins, lactose and
galactosides to monosaccharides such as alpha-
(cog3345, P < 0.001) and beta-galactosidases (cog3250,
P < 0.004) were over-represented in freshwater meta-
genomes. Also, other homologues to enzymes cata-
lysing the hydrolysis of glycosidic linkages were
over-represented in the freshwaters metagenomes,
including chitinase (cog3179, P < 0.001), glycotrans-
ferase (cog438, P < 0.001) and glycosidase (cog2723,
P < 0.001; cog366, P < 0.001), known to mediate the pro-
duction of oligosaccharide and monosaccharide from
chitin, cellulose and hemicelluloses. This is consistent
with a recent finding that the genomes of the abundant
acI-B1 taxon of freshwater Actinobacteria are enriched
with glycosidase homologues when compared with other
bacterial genomes (Garcia et al., 2012).

Moreover, freshwater microbial genomes seem to
harbour a higher proportion of certain putative genes
involved in transport of sugars such as xylose
(cog4213, P < 0.001; cog4214, P < 0.001) and various
polysaccharides (cog1134, P < 0.001; cog1682, P <
0.001; cog3833 P < 0.001) (Fig. 2). A similar pattern was
also observed for genes involved in transport of pep-
tides (cog410, P < 0.001; cog411, P < 0.001; cog4177,
P < 0.002). In contrast, ORFs putatively identified as
ATP-dependent amino-acid transporters (cog2113, P <
0.00009; cog4160, P < 0.001; cog4175, P < 0.001;
cog4176, P < 0.002; cog4215, P < 0.001; cog4597,

Fig. 2. Heatmap of COGs showing only those that were either significantly over- (A) and under-represented (B) in freshwater metagenomes
when compared with marine metagenomes after resampling and normalization against single-copy core COGs. Significantly over- and
under-represented COGs were identified by Wilcoxon test (P < 0.01) when testing all data sets, as well as the best data sets only, and the
subsequent estimation of false discovery rate (q < 0.027). These lists are not exhaustive and only include well-characterized COGs. COGs
mentioned in the text are indicated. Dendograms from hierarchical cluster analysis based on displayed COGs are shown at the top of each
graph.
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P < 0.001) were significantly over-represented in marine
metagenomes. We propose that the compositional dif-
ferences in amino acid and carbohydrate metabolism is
a consequence of major differences in the overall com-
position of organic substrates available for heterotrophs
in the respective biomes. Freshwater systems, including
the temperate systems of this study, are highly influ-
enced by allochthonous organic matter inputs from the
catchment as well as plant-derived polysaccharides (e.g.
xylose-containing hemicellulose) inputs from the littoral
zone, whereas marine systems are less influenced by
organic matter loadings from such terrestrial surround-
ings and littoral fringe zones and instead rely largely on
autochthonous organic matter inputs from plankton rich
in proteinaceous materials (Duarte and Cebrián, 1996;
Bertilsson and Jones, 2003).

ORFs putatively involved in acquisition of phosphate
(cog573/cog581, P < 0.003/0.006; cog1117, P < 0.002)
including phosphate uptake regulators (cog704,
P < 0.003) and sulphate (cog555, P < 0.007; cog1118,
P < 0.001; cog1613, P < 0.002; cog4208, P < 0.001) were
mostly over-represented in freshwater genomes. The
over-representation of exopolyphospatase (cog248,
P < 0.001) and polyphosphate kinase (cog855, P < 0.001)
homologues supports the previously recognized role of
polyphosphates as a form of phosphorus storage in
freshwater environments (Broberg and Persson, 1988;
Ilikchyan et al., 2009). We did not observe any significant
differences in nitrogen metabolism and uptake between
the marine and often more productive freshwater
systems. The previously inferred reliance on potassium
instead of sodium for osmoregulation was a typical
feature of the freshwater metagenomes as well as a
higher representation of reads annotated as cobalt, mag-
nesium and nickel transporter systems (Fig. 2A). In con-
trast, homologues of zinc and manganese transporters
were over-represented in marine metagenomes (Fig. 2B).
This confirms previously reported differences in osmo-
regulatory traits between freshwater and marine microor-
ganisms inferred from comparative metagenomics of
microbial communities (Oh et al., 2011). These findings
are also consistent with recent results based on compari-
sons of 16S rRNA gene libraries (Zwart et al., 2002;
Lozupone and Knight, 2007; Logares et al., 2009; Newton
et al., 2011) where salinity was suggested to represent a
strong environmental barrier for microorganisms. Our
results also point to the importance of factors other than
salinity, at least when comparing marine and freshwater
environments with regards to substrate availability and
substrate acquisition. As illustrated earlier, microbial com-
munities in these contrasting biomes seem to have differ-
ent metabolic capabilities as genes involved in amino acid
metabolism were over-represented in marine metage-
nomes when compared with freshwater metagenomes,

and clear differences in the strategies of carbohydrate
metabolism were observed.

Comparing functional profiles among freshwater
systems

When freshwater functional profiles were analysed by
non-metric multidimensional scaling, it was apparent that
Sparkling Lake and Trout Bog Lake metagenomes were
rather distinct from the others (Fig. 3). This can at least
partly be attributed to their high amounts of eukaryotic
sequences. An additional non-exclusive explanation may
be trophic status: Trout Bog Lake was the only humic
(dystrophic) system, whereas Sparkling Lake was the
most oligotrophic system in the study. Interestingly, we
observed a significant correlation between the overall
functional composition and TP, a widely used proxy for
ecosystem productivity (Schindler, 1978) (R2 = 0.53,
P = 0.029; Fig. 3). The correlation was even more signifi-
cant if only bacteria were taken into account (R2 = 0.52,
P = 0.018). The observation that the functional profile of
one metagenome from Yellowstone Lake was very differ-
ent from the others was probably caused by the proximity
of this sample to a thermal vent and the associated higher
temperature and different ion composition. For a more
detailed analysis, we relied on maximal information-based
non-parametric exploration (MINE; Reshef et al., 2011)
statistics for identifying and classifying relationships
between the proportion of COGs and TP. We used a
maximal information coefficient (MIC) > 0.54 (uncorrected
P < 0.05 and false discovery rate < 2.56e-07) to identify
COGs that were significantly related to productivity (TP) in
the sampled lakes. A total of 183 COGs of 3335 COGs
tested were identified using these criteria, whereof 34
COGs were positively related to TP (Table S5). An inverse
relationship to TP was observed for certain active trans-
porters of phosphonates (cog3454, cog4107) and organic
compounds such as amino acids (cog559, cog1147,
cog4177). Homologues to other active transporters such
as permeases (cog2998, cog4603, cog5265) that facili-
tate the transport of for example nitrate and sulphate
(cog619, cog659) were negatively related with TP. The
number of predicted homologues to phosphoserine phos-
phatase (cog560) and serine acetyltransferase (cog1045)
genes involved in amino acid metabolism was negatively
correlated with TP as were genes with a crucial role in
carbohydrate degradation (cog153, cog1082, cog3250).
Other gene products that could be useful for diagnostics
of metabolic processes were carbon-monoxide dehy-
drogenase CoxLMS subunits (CO oxidation) that were
significantly negatively related to TP. These genes are
involved in the oxidation of CO to CO2 and represent an
alternative or supplementary energy source that is wide-
spread in marine bacteria (King and Weber, 2007;
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Brinkhoff et al., 2008). CO-dehydrogenase genes were
detected at higher relative abundance in three lakes with
low levels of TP: Trout Bog, Damariscotta and Vättern.

The significant relationships observed between TP and
COG patterns inferred by MINE mainly provide new
genome-level confirmation of earlier empirical findings of
how microbial processes such as sugar, amino acid and
phosphate acquisition strategies are structured along pro-
ductivity gradients but also identify variations in the occur-
rence of response regulators that allow microbes to sense
and to react to environmental stress (i.e. cog589).

Phylogenetic analyses of selected functional genes and
the correspondence between functional and taxonomic
composition

Phylogenetic trees were constructed for a selected
number of proteins including the mmoA, nirK, pstA/B,
RuBisCo and the nifH/bchL/chlL family, including
Swiss-Prot references and their homologues in the
metagenomes (Fig. S4). The selected genes are involved
in key biogeochemical processes including methane oxi-
dation, denitrification, phosphorus uptake, CO2 fixation,
nitrogen fixation and the synthesis of photopigments.
Obtained phylogenies were analysed to infer the
phylogenetic structuring between and within freshwater

and marine sequences using PYLOCOM (Webb et al.,
2011). Resulting beta nearest taxon indexes (βNTIs; see
Experimental procedures) from the functional genes were
compared with βNTI derived for the 16S rRNA (Table 4).
These comparisons revealed that proteins, similar to the
16S rRNA, exhibit phylogenetic overdispersion between
biomes when compared with random phylogenetic struc-
tures. This infers that freshwater and marine protein

Fig. 3. Non-metric multidimensional scaling
plot of microbial functional diversity along a
productivity gradient (stress-value = 0.10).
This plot is based on Horn–Morisita distances
from COGs lists of 12 freshwater
metagenomes. Total phosphors (TP) was
mapped as en environmental variable vector
onto the ordination using R function (TP)
‘envfit’. NMDS, Non-parametric-Multi-
Dimensional-Scaling.

Table 4. Results from phylogenetic analyses estimating beta-NTI
within and between marine and freshwater sequences.

BetaNTI Freshwater Marine

Freshwater 16S −7.775
bcn −1.989
nirK 0.036
RuBisCo 15.345
pstA/B −3.156
mmoA 12.287

Marine 16S −27.123 21.883
bcn −4.866 1.754
nirK −3.736 0.278
RuBisCo −232.179 30.088
pstA/B −1.654 3.144
mmoA −90.028 22.273

Genes annotated as 16S rRNA and related to functional genes such
as mmoA, nirK, pstA/B, RuBisCo, and the nifH/bchL/chlL family.
Values above +2 indicate phylogenetic clustering, whereas a NTI
below −2 indicates overdispersion.
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sequences are more different from each other than
expected by chance (Webb et al., 2011). This suggests
that these key functional genes from marine and freshwa-
ter biomes are usually not closely related and often group
into distinct marine and freshwater phylogenetic clusters,
similar to what has been reported before for the 16S rRNA
marker gene (Logares et al., 2009).

To determine if 16S rRNA-derived taxonomic and func-
tional profiles among the metagenomes were coherent, a
procrustes analysis was performed (Oksanen et al.,
2008). Our results demonstrate that the known rRNA-
inferred microbial community shifts across the freshwater
to marine gradient are reflected also in cohesive shifts in
community-level functions observed in the metagenomes.
16S rRNA taxonomy resolved to either genus/typical
freshwater taxa or phylum levels were significantly corre-
lated with the functional data based on COG annotations
(R = 0.95 and R = 0.83, respectively, P < 0.001 using
procrustes analysis). When lake data were analysed
separately, the procrustes analyses between 16S rRNA
community composition (both phylum and genus compo-
sition) and functional COG annotations revealed similarly
high coefficient values (R = 0.74 and R = 0.84, respec-
tively, using procrustes analysis), but because these
analyses included fewer samples, P-values increased
dramatically (P < 0.033 and P < 0.11 respectively). This
suggests that the taxonomic composition as inferred by
phylogenetic markers (i.e. 16S rRNA gene) and the func-
tional potential of communities are linked through evolu-
tionary history. Still, it remains to be shown whether this
implies that differentiation at the fine-scale population
level has only minor effects on the overall gene content
and potential subsequent ecosystem function, or instead
is mainly determined by distribution patterns of broad
taxonomic groups.

Outlook

Our metagenomic analyses of pelagic microbial commu-
nities in lakes and oceans suggest that many core func-
tions are shared across these two biomes. Although the
functional overlap is substantial, our analyses also point
to some profound functional differences. Because of the
rather shallow coverage of the underlying genetic diver-
sity in the metagenomes analysed here, many genes or
gene categories were not sufficiently abundant in the data
set to determine with any certainty, whether or not there
were significant changes in their relative abundances
across the freshwater marine boundary or across the
freshwater productivity gradient. This applies to genes
associated with less widespread metabolic processes that
may nevertheless be of critical importance to carbon and
nitrogen cycling in these aquatic systems (including
genes associated with N cycling, chitin degradation and

ammonia oxidation). Forthcoming deeper metagenomic
sequencing will likely capture trends also in these
genes across environmental gradients and will help
build a more comprehensive understanding of how the
functional capabilities of aquatic microbial communities
change along salinity and productivity gradients. Never-
theless, the present comparison of freshwater and
marine metagenomes based on whole-genome shotgun
sequence data did provide functional, phylogenetic and
taxonomic trends across these gradients and will help us
design biogeochemical experiments to test metagenome-
inferred predictions such as differences in substrate pref-
erences. Examples are the inferred prevalence towards
amino acids in marine systems and difference in carbo-
hydrate metabolism between marine and freshwaters,
and the over-representation of homologues involved in
the oxidation of recalcitrant organic matter in oligotrophic
lakes compared with eutrophic lakes.

Experimental procedures

Sample characterization and DNA extraction

For Lakes Vättern, Ekoln and Erken, integrated water
samples from the upper 2 m were collected with a rinsed
2 m Polyvinyl chloride (PVC) tube. Samples were sieved
through an autoclaved 100 μm nylon mesh prior to further
processing. Samples were kept dark at near in situ tem-
perature and upon return to the laboratory, microbial cells
from between 0.5 and 1 l of water were collected on
replicated 0.2 μm membrane filters (Supor 200, 47 mm
diameter; Gelman) by vacuum filtration followed by freez-
ing at −80°C until further analyses. Water temperature
profiles measured on site at the time of sampling verified
that the sampling was limited to the upper mixed layer
(epilimnion). TP and dissolved organic carbon was meas-
ured using standard methods as previously described
(Eiler et al., 2012). Community DNA was extracted from
individual membrane filters using the FASTDNA spin kit
for soil (QBiogene, Carlsbad, CA, USA) as recommended
by the manufacturer. At least three membrane filters
were extracted to recover sufficient DNA for 454
pyrosequencing. The amount and quality of recovered
DNA was quantified by spectrophotometry at 260 and
280 nm, and aqarose gel electrophoresis revealed DNA
with an average molecular weight exceeding 20 kb. All
three metagenome samples were sequenced with 454
pyrosequencing with Titanium chemistry using half a chip
for the Lake Erken metagenome and one quarter of a chip
for Ekoln and Vättern (separated by sample specific
molecular barcodes). Samples were collected from the
epilimnia of Damariscotta Lake, Lake Mendota, Sparkling
Lake, and Trout Bog Lake, and sequenced as described
elsewhere (Martinez-Garcia et al., 2012). Sequences
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are publicly available through the European Nucleotide
Archive under project PRJEB4844.

Data mining

Metagenome data from Lake Lanier (Oh et al., 2011) and
two samples from Yellowstone Lake (T. McDermott,
unpubl. data) were acquired from SRA (fastq-files) and
analysed following the quality control and annotation pro-
cedures as described later. Fasta files for all selected
marine samples were downloaded from Community
cyberinfrastructure for Advanced Microbial Ecology
Research and Analysis (CAMERA) (Seshadri et al.,
2007). Annotations were performed as described later.

Sequence annotation and functional assignment

Preprocessing was performed to bring all data sets (fasta
and quality files) to the same starting point. This procedure
included the following steps: length filter (length > 150) and
quality filter (mean quality > 21) for lake metagenomes and
just a length filter for marine metagenomes (upper length
filter as listed in Table S2), clustering artificial duplicates
with cd-hit-454 (Beifang et al., 2010) using 97% identity
threshold and 80% of the sequence in the alignment, and
finally creation of consensus sequences from the clusters
with cdhit-cluster consensus ignoring terminal gaps
(-maxlen = 1). Quality-filtered data sets were used in all
analyses. Simple six-frame translation with 50 aa length
threshold was used for non-annotation-based analyses
(aa usage and isoelectric point). COG annotations of the
reads were extracted from the best tblastx hit against
STRING (Franceschini et al., 2013), and rRNAs were iden-
tified using hmm rRNA to obtain annotations. An E-value
threshold of 1e-10 was applied.

We also performed a second preprocessing and anno-
tation procedure, and subsequent statistical analyses in
which results supported the main findings presented
earlier. In short, a more stringent quality filtering was
performed with cutting reads when quality scores dropped
below 21 and using a length cut-off of 150 bp. Clustering
artificial duplicates was performed as described earlier.
The quality-filtered data sets were then submitted to
CAMERA using Rapid Analysis of Multiple Metagenomes
with a Clustering and Annotation Pipeline (RAMMCAP)
(Seshadri et al., 2007; Weizhong, 2009) with the following
parameters: six-frame translation, hmm rRNA and anno-
tation (no clustering), which masks tRNAs and rRNAs
before calling ORFs. Subsequently, Reversed Position
Specific-Basic Local Alignment Search Tool (RPS-
BLAST) was performed against COG (Tatusov et al.,
2003). An E-value threshold of 1e-10 was applied. Fasta
files for the marine data sets downloaded from CAMERA
were used without any quality filtering, except cd-hit-454
for artificial duplicate removal.

Statistical analyses

To ensure robustness of the statistical tests to outliers, we
have compared the results using three types of data sets:
all COGs from 12 lake and 13 marine samples; all COGs
from 8 lake and 12 marine samples; and only bacterial
COGs from 12 lake and 13 marine samples. The smaller
number of samples for the second set resulted from
excluding samples with the worst quality processing
results. Bacterial COGs are used to address the issues of
varied eukaryotic content between the samples. The
abundance of individual reads matching a particular COG
were normalized against the average abundance of 35
likely essential and single copy COGs (Ciccarelli et al.,
2006; Raes et al., 2007) and used to generate a metabolic
profile of the metagenome. This provides a proxy for
the number of genomes harbouring a specific COG in
the community. Core-gene normalized profiles were
then used in statistical analyses such as metaMDS,
PERMANOVA and procrustes test with Horn-Morisita
distance measure using the functions in the ‘ecodist’
and ‘vegan’ libraries in the R-package (http://www.r-
project.org; Goslee and Urban, 2007; Oksanen et al.,
2008). PERMANOVA (Anderson, 2001) was used to
determine significant differences between freshwater and
marine functional beta-diversity, and procrustes analysis
was used to determine correspondence between taxo-
nomic and functional composition. To fit TP as an envi-
ronmental vector onto the ordination, we used the function
‘envfit’. The fitted vector is an arrow that points to the
direction of its most rapid change in the ordination space
(direction of the gradient), and its length is proportional to
the correlation between community composition and
TP. Prior to applying the Wilcoxon test, COGs were
resampled and then normalized against the single-copy
core COGs to identify over- and under-represented COGs
in freshwater compared with marine metagenomes. False
discovery rate (q-value) was estimated after Storey
(2002). MINE (Reshef et al., 2011) was used with default
settings for identifying and classifying relationships
between the resampled and normalized COG abun-
dances, and TP that was used as a proxy of lake produc-
tivity (Schindler, 1978). Relationships were defined as
significant when the MIC was > 0.54 with a P-value < 0.01
and a false discovery rate < 2.56e-07.

Taxonomic assignments

Protein-based taxonomic assignments for domain and
phylum were extracted from the best hit to the STRING
database (E-value threshold 10−10). In addition, SSU
rRNAs were extracted by hmm rRNA. The Bayesian clas-
sifier (Wang et al., 2007) (using bootstrap cut-off > 60)
was used to annotate 16S rRNA genes against a custom
curated freshwater-specific database (Newton et al.,
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2011) and the SILVA database using taxonomy after
SILVA (Quast et al., 2013). The number of reads anno-
tated to the different bacterial phyla and bacterial ‘genera’
were extracted and ordinated using R (Oksanen et al.,
2008). A procrustes test was used to compare the func-
tional annotations with the taxonomic annotations at the
genus level.

Phylogenetic analyses

Reference (master) sequences for mmoA, nirK, pstA/B,
RuBisCo and the nifH/bchL/chlL family were obtained
from Swiss-Prot. After six-frame-shift translation of the
sequences (using a minimum length of 50 aa), homolo-
gous ORFs in the 29 metagenomes were identified based
on blastp searches using an E-value threshold of 1e-10
and per cent identity of 40%. Alignments of master
sequences were obtained for each of the five genes
using Multiple sequence comparison by log-expectation
(MUSCLE) (default settings; Edgar, 2004). Preliminary
multiple sequence alignment were obtained for the
metagenomic ORFs by MUSCLE using settings -maxiters
1 and -diags to increase speed. These ‘slave’ align-
ments were then aligned against the master alignment
with muscle using function ‘-profile’. Bootstrapped
Random Axelerated Maximum Likelihood (RAxML) trees
(Stamatakis et al., 2008) were computed based on
trimmed master alignments using standard model JTTF
and default convergence criteria. Trees and alignments
were imported into ARB (Ludwig et al., 2004), and the
quick parsimony option was used to add the aligned
metagenomic ORFs to the RAxML master trees. For 16S
rRNA genes, the procedure outlined in Peura and
colleagues (2012) was used to insert metagenomic 16S
rRNA homologues into the SILVA106 reference tree.
Phylogenetic trees were visualized using iTOL (Letunic
and Bork, 2011) and analysed using PHYLOCOM (Webb
et al., 2011). The phylocom function ‘comdistnt’ was used
to infer if freshwater and marine sequences were
phylogenetically distinct by estimating the βNTI. Here, we
used both the marine and freshwater biomes as separate
groups. Mean nearest taxon distance (MNTD) was esti-
mated for within each biome and between biomes. To
weigh phylogenetic distances by taxa abundances, the
average distance among random individuals drawn from
each of the two biomes was calculated. The NTI was
quantified by the number of standard deviations that the
observed MNTD is from the mean of the null distribution
(999 randomizations; MNTDnull). MNTDnull is found by
randomizing OTUs across the phylogeny and recalculat-
ing MNTD 999 times.

NTI = −1*(MNTDobs-mean MNTDnull/sdMNTDnull)
(Webb et al., 2002).

For a single community, NTI greater than +2 indicates
that coexisting taxa are more closely related than
expected by chance (phylogenetic clustering). NTI less
than −2 indicates coexisting taxa are more distantly
related than expected by chance (phylogenetic over-
dispersion). βNTI is the between-group analogue of NTI
(Fine and Kembel, 2011; Webb et al., 2011).

Acknowledgements

We want to thank the Uppsala Multidisciplinary Center for
Advanced Computational Science (UPPMAX) for access to
data storage and computing resources under project
b2011105. This work was supported by the Swedish Foun-
dation for Strategic Research (Grant Number ICA10-0015 to
AE), the Swedish Research Council (Grant Numbers 349-
2007-831, 621-2008-3259 and 621-2011-4669 to SGEA;
2009-3784, 2008-1923 and 2012-3892 to SB), the National
Science Foundation [Awards CBET-0644949 (CAREER),
MCB-0702653 (Microbial Observatories Program) to KD and
DEB-841933 to RS], DEB-0822700 (Long Term Ecological
Research, NTL LTER to KDM), the European Union (grant to
SGEA), the Göran Gustafsson Foundation (grant to SGEA),
the Knut and Alice Wallenberg Foundation (Grant Numbers
KAW-2011.0148 and KAW-2012.0075 to SGEA), and the
Swedish Wennergren Foundation (to KDM and SB).
Pyrosequencing was partially supported by an instrument
grant from the K&A Wallenberg foundation. Friederike
Heinrich and Lorena Grubisic assisted with sampling and
provided metadata for the Swedish lakes.

References

Anderson, M.J. (2001) A new method for non-parametric
multivariate analysis of variance. Aust Ecol 26: 2–46.

Battin, T.J., Luyssaert, S., Kaplan, L.A., Aufdenkampe, A.K.,
Richter, A., and Tranvik, L.J. (2009) The boundless carbon
cycle. Nat Geosci 2: 598–600.

Beifang, N., Limin, F., Shulei, S., and Weizhong, L. (2010)
Artificial and natural duplicates in pyrosequencing reads
of metagenomic data. BMC Bioinformatics 11: 187.
doi:10.1186/1471-2105-11-187.

Bertilsson, S., and Jones, J.B., Jr (2003) Supply of dissolved
organic matter to aquatic ecosystems: autochthonous
sources. In Aquatic Ecosystems: Interactivity of Dissolved
Organic Matter. Findlay, S.E.G., and Sinsabaugh, R.L.
(eds). New York, NY, USA: Academic Press, pp. 3–24.

Bragg, J.G., and Wagner, A. (2009) Protein material costs:
single atoms can make an evolutionary difference. Trends
Genet 25: 5–8.

Brinkhoff, T., Giebel, H.A., and Simon, M. (2008) Diversity,
ecology, and genomics of the Roseobacterclade: a short
overview. Arch Microbiol 189: 531–539.

Broberg, O., and Persson, G. (1988) Particulate and dis-
solved phosphorus forms in freshwater: composition and
analysis. Hydrobiologia 170: 61–90.

Carrigg, C., Rice, O., Kavanagh, S., Collins, G., and
O.’Flaherty, V. (2007) DNA extraction method affects
microbial community profiles from soils and sediments.
Appl Microbiol Biotechnol 77: 955–964.

14 A. Eiler et al.

© 2013 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology



Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J.,
Snel, B., and Bork, P. (2006) Toward automatic reconstruc-
tion of a highly resolved tree of life. Science 311: 1283–
1287.

Debroas, D., Humbert, J.F., Enault, F., Bronner, G.,
Faubladier, M., and Cornillot, E. (2009) Metagenomic
approach studying the taxonomic and functional diversity
of the bacterial community in a mesotrophic lake (Lac du
Bourget – France). Environ Microbiol 11: 2412–2424.

DeLong, E.F., Preston, C.M., Mincer, T., Rich, V., Hallam,
S.J., Frigaard, N.U., et al. (2006) Community genomics
among stratified microbial assemblages in the ocean’s
interior. Science 311: 496–503.

Dinsdale, E.A., Edwards, R.A., Hall, D., Angly, F., Breitbart,
M., Brulc, J.M., et al. (2008) Functional metagenomic pro-
filing of nine biomes. Nature 452: 629–632.

Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik,
L.J., Striegl, R.G., et al. (2006) The global abundance and
size distribution of lakes, ponds, and impoundments.
Limnol Oceanogr 51: 2388–2397.

Duarte, C.M., and Cebrián, J. (1996) The fate of marine
autotrophic production. Limnol Oceanogr 41: 1758–1766.

Edgar, R.C. (2004) MUSCLE: Multiple sequence alignment
with high accuracy and high throughput. Nucleic Acids Res
32: 1792–1797.

Eiler, A., and Bertilsson, S. (2004) Composition of freshwater
bacterial communities associated with cyanobacterial
blooms in four Swedish lakes. Environ Microbiol 6: 1228–
1243.

Eiler, A., and Bertilsson, S. (2007) Flavobacteria blooms in
four eutrophic lakes: linking population dynamics of fresh-
water bacterioplankton to resource availability. Appl
Environ Microbiol 73: 3511–3518.

Eiler, A., Heinrich, F., and Bertilsson, S. (2012) Coherent
dynamics and association networks among lake
bacterioplankton taxa. ISME J 6: 330–342.

Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone,
C., Jones, R., et al. (2007) Metagenomic and small-subunit
rRNA analyses reveal the genetic diversity of Bacteria,
Archaea, Fungi, and viruses in soil. Appl Environ Microbiol
73: 7059–7066.

Fine, P.V.A., and Kembel, S.W. (2011) Phylogenetic commu-
nity structure and phylogenetic turnover across space and
edaphic gradients in western Amazonian tree communities.
Ecography 34: 552–565.

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M.,
Simonovic, M., Roth, A., et al. (2013) STRING v9.1:
protein-protein interaction networks, with increased cover-
age and integration. Nucleic Acids Res 41 (Database
issue): D808–D815. doi:10.1093/nar/gks1094.

Garcia, S.L., McMahon, K.D., Martinez-Garcia, M.,
Sricastava, A., Sczyrba, A., Stepanauskas, R., et al. (2012)
Metabolic potential of a single cell belonging to one of the
most abundant lineages in freshwater bacterioplankton.
ISME J 7: 137–147.

Gianoulis, T.A., Raes, J., Patel, P.V., Bjornson, R., Korbel,
J.O., Letunic, I., et al. (2009) Quantifying environmental
adaptation of metabolic pathways in metagenomics. Proc
Natl Acad Sci USA 106: 1374–1379.

Gilbert, J.A., Meyer, F., Schriml, L., Joint, I.R., Muhling, M., and
Field, D. (2010) Metagenomes and metatranscriptomes

from the L4 long-term coastal monitoring station in the
Western English Channel. Stand Genomic Sci 3: 183–193.

Giovannoni, S.J., Tripp, H.J., Givan, S., Podar, M., Vergin,
K.L., Baptista, D., et al. (2005) Genome streamlining in a
cosmopolitan oceanic bacterium. Science 309: 1242–
1245.

Glöckner, F.O., Fuchs, B., and Amann, R. (1999)
Bacterioplankton composition of lakes and oceans: a first
comparson based on fluorescence in situ hybridization.
Appl Environ Microbiol 65: 3721–3726.

Goslee, S.C., and Urban, D.L. (2007) The ecodist package
for dissimilarity-based analysis of ecological data. J Stat
Softw 22: i07.

Grote, J., Thrash, J.C., Huggett, M.J., Landry, Z.C., Carini, P.,
Giovannoni, S.J., and Rappé, M.S. (2012) Streamlining
and core genome conservation among highly divergent
members of the SAR11 clade. Mbio 3: e00252-12.
doi:10.1128/mBio.00252-12.

Hahn, M.W., Scheuerl, T., Jezberová, J., Koll, U., Jezbera, J.,
Šimek, K., et al. (2012) The passive yet successful way of
planktonic life: genomic and experimental analysis of the
ecology of a free-living Polynucleobacter population. PLoS
ONE 7: e32772.

Ilikchyan, I.N., McKay, R.M.L., Zehr, J.P., Dyhrman, S.T., and
Bullerjahn, G.S. (2009) Detection and expression of the
phosphonate transporter gene phnD in marine and fresh-
water picocyanobacteria. Environ Microbiol 11: 1314–
1324.

King, G.M., and Weber, C.F. (2007) Distribution, diversity and
ecology of aerobic CO-oxidizing bacteria. Nat Rev
Microbiol 5: 107–118.

Kolmonen, E., Haukka, K., Rantala-Ylinen, A.,
Rajaniemi-Wacklin, P., Lepistö, L., and Sivonen, K. (2011)
Bacterioplankton community composition in 67 Finnish
lakes differs according to trophic status. Aquat Microb Ecol
62: 241–250.

Kunin, V., Raes, J., Harris, J.K., Spear, J.R., Walker, J.J.,
Ivanova, N., et al. (2008) Millimeter-scale genetic gradients
and community-level molecular convergence in a
hypersaline microbial mat. Mol Syst Biol 4: 198.

Letunic, I., and Bork, P. (2011) Interactive tree of life v2:
online annotation and display of phylogenetic trees made
easy. Nucleic Acids Res 39: 475–478.

Lindström, E.S. (2000) Bacterioplankton community compo-
sition in five lakes differing in trophic status and humic
content. Microb Ecol 40: 104–113.

Lindström, E.S., Kamst-Van Agterveld, M.P., and Zwart, G.
(2005) Distribution of typical freshwater bacterial groups is
associated with pH, temperature, and lake water retention
time. Appl Environ Microbiol 71: 8201–8206.

Logares, R., Bråte, J., Bertilsson, S., Clasen, J.L.,
Shalchian-Tabrizi, K., and Rengefors, K. (2009) Infrequent
marine-freshwater transitions in the microbial world. Trends
Microbiol 17: 414–422.

Lozupone, C.A., and Knight, R. (2007) Global patterns in
bacterial diversity. Proc Natl Acad Sci USA 104: 11436–
11440.

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H.,
Yadhukumar, et al. (2004) ARB: a software environment for
sequence data. Nucleic Acids Res 32: 1363–1371.

Martinez-Garcia, M., Swan, B.K., Poulton, N.J., Gomez, M.L.,

Comparative freshwater metagenomics 15

© 2013 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology



Masland, D., Sieracki, M.E., and Stepanauskas, R. (2012)
High-throughput single-cell sequencing identifies
photoheterotrophs and chemoautotrophs in freshwater
bacterioplankton. ISME J 6: 113–123.

Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell,
R.K., Fuhrman, J.A., et al. (2006) Microbial biogeography:
putting microorganisms on the map. Nat Rev Microbiol 4:
102–112.

Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., and
Bertilsson, S. (2011) A guide to the natural history of
freshwater lake bacteria. Microbiol Mol Biol Rev 75: 14–
49.

Oh, S., Caro-Quintero, A., Tsementsi, D., Deleon-Rodriguez,
N., Luo, C., Poretsky, R., and Konstantinidis, K. (2011)
Metagenomic insights into the evolution, function and com-
plexity iof the planktonic microbial community of Lake
Lanier, a temperate freshwater system. Appl Environ
Microbiol 77: 6000–6011.

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson,
G.L., Solymos, P., et al. (2008) Vegan: Community Ecology
Package. http://cran.r-project.org/web/packages/vegan/
vegan.pdf

Peura, S., Eiler, A., Bertilsson, S., Nykänen, H., Tiirola, M.,
and Jones, R.I. (2012) Distinct and diverse
bacterioplankton communities in the hypolimnion of boreal
lakes are dominated by candidate division OD1. ISME J 6:
1640–1652.

Quaiser, A., Zivanovic, Y., Moreira, D., and López-Garcia, P.
(2011) Comparative metagenomics of bathypelagic plank-
ton and bottom sediment from the Sea of Marmara. ISME
J 5: 285–304.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T.,
Yarza, P., et al. (2013) The SILVA ribosomal RNA gene
database project: improved data processing and web-
based tools. Nucleic Acids Res 41: D590–D594.

Raes, J., Koerbel, J.O., Lercher, M.J., von Mering, C., and
Bork, P. (2007) Prediction of effective genome size in
metagenomic samples. Genome Biol 8: R10.

Raes, J., Letunic, I., Yamada, T., Jensen, L.J., and Bork, P.
(2011) Toward molecular trait-based ecology through inte-
gration of biogeochemical, geographical and metagenomic
data. Mol Syst Biol 7: 437.

Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R.,
McVean, G., Turnbaugh, P.J., et al. (2011) Detecting novel
associations in large data sets. Science 334: 1518–1524.

Riesenfeld, C.R., Schloss, P.D., and Handelsman, J. (2004)
Metagenomics: genomic analysis of microbial communi-
ties. Annu Rev Genet 38: 525–552.

Rusch, D.B., Halpern, A.L., Sutton, G., Heidelberg, K.B.,
Williamson, S., Yooseph, S., et al. (2007) The sorcerer II
global ocean sampling expedition: northwest Atlantic
through eastern tropical pacific. PLoS Biol 5: 398–431.

Schindler, D.W. (1978) Factors regulating phytoplankton pro-
duction and standing crop in the world’s lakes. Limnol
Oceanogr 23: 478–486.

Seshadri, R., Kravitz, S.A., Smarr, L., Gilna, P., and Frazier,
M. (2007) Camera: a community resource for
metagenomics. PLoS Biol 5: e75.

Stamatakis, A., Hoover, P., and Rougemont, J. (2008) A rapid
bootstrap algorithm for the RAxML Web Servers. Syst Biol
57: 758–771.

Storey, J.D. (2002) A direct approach to false discovery rates.
J R Stat Soc Ser B 64: 479–498.

Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R.,
Kiryutin, B., et al. (2003) The COG database: an update
version includes eukaryotes. BMC Bioinformatics 4: 41.
doi:10.1186/1471-2105-4-41.

Tranvik, L., Downing, J., Cotner, J., Loiselle, S., et al. (2009)
Lakes and reservoirs as regulators of carbon cycling and
climate. Limnol Oceanogr 54: 2298–2314.

Tringe, S.G., von Mering, C., Kobayashi, A., Salamov, A.A.,
Chen, K., Chang, H.W., et al. (2005) Comparative
metagenomics of microbial communities. Science 308:
554–557.

Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. (2007)
Naive Bayesian classifier for rapid assignment of rRNA
sequences into the new bacterial taxonomy. Appl Environ
Microbiol 73: 5261–5267.

Webb, C.O., Ackerly, D.D., McPeek, M.A., and Donoghue,
M.J. (2002) Phylogenies and community ecology. Annu
Rev Ecol Syst 33: 475–505.

Webb, C.O., Ackerly, D.D., and Kembel, S. (2011).
Phylocom: Software for the analysis of phylogenetic com-
munity structure and character evolution (with phylomatic
and ecoevolve). User’s manual, version 4.2 [WWW docu-
ment]. URL http://www.phylodiversity.net/phylocom/

Weizhong, L. (2009) Analysis and comparison of very large
metagenomes with fast clustering and functional annota-
tion. BMC Bioinformatics 10: 359. doi:10.1186/1471-2105-
10-359.

Yannarell, A.C., and Triplett, E.W. (2005) Geographic and
environmental sources of variation in lake bacterial com-
munity composition. Appl Environ Microbiol 71: 227–239.

Zwart, G., Crump, B.C., Agterveld, M.P.K.V., Hagen, F., and
Han, S.K. (2002) Typical freshwater bacteria: an analysis
of available 16S rRNA gene sequences from plankton of
lakes and rivers. Aquat Microb Ecol 28: 141–155.

Supporting information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Fig. S1. Boxplots depicting the GC % of reads from each
metagenome.
Fig. S2. MEGAN classification into Bacteria, Archaea,
Eukaryota and viruses.
Fig. S3. Non-metric multidimensional scaling plot comparing
marine and freshwater metagenomes (stress-value = 0.10).
This plot is based on Horn–Morisita distances from COGs
abundance lists of 25 marine and freshwater metagenomes.
Fig. S4. Examples for phylogenetic trees of metagenomic
sequences representing homologues of the nirK (A), pstA/B
(B) and the nifH/bchL/chlL family (C). Trees were constructed
by using the quick parsimony option (in ARB) to add aligned
metagenomic sequences to RAxML master trees. For the
16S rRNA gene, the SILVA106 reference tree was used as
the master tree. Blue indicates sequences obtained from
marine, whereas red indicates samples from freshwater
systems.
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comparative analyses.
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the removal of reads during the preprocessing steps. The last
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for subsequent analyses.
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zation (Ciccarelli et al., 2006; Raes et al., 2007).

Table S4. COGs that were significantly over- or under-
represented in the freshwater metagenomes when compared
with the marine metagenomes. Results from Wilcoxon test.
Table S5. COGs that were significantly related with total
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Results from MINE (Reshef et al., 2011).
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