16 research outputs found

    Mathematically aggregating experts' predictions of possible futures

    Get PDF
    Structured protocols offer a transparent and systematic way to elicit and combine/aggregate, probabilistic predictions from multiple experts. These judgements can be aggregated behaviourally or mathematically to derive a final group prediction. Mathematical rules (e.g., weighted linear combinations of judgments) provide an objective approach to aggregation. The quality of this aggregation can be defined in terms of accuracy, calibration and informativeness. These measures can be used to compare different aggregation approaches and help decide on which aggregation produces the “best” final prediction. When experts’ performance can be scored on similar questions ahead of time, these scores can be translated into performance-based weights, and a performance-based weighted aggregation can then be used. When this is not possible though, several other aggregation methods, informed by measurable proxies for good performance, can be formulated and compared. Here, we develop a suite of aggregation methods, informed by previous experience and the available literature. We differentially weight our experts’ estimates by measures of reasoning, engagement, openness to changing their mind, informativeness, prior knowledge, and extremity, asymmetry or granularity of estimates. Next, we investigate the relative performance of these aggregation methods using three datasets. The main goal of this research is to explore how measures of knowledge and behaviour of individuals can be leveraged to produce a better performing combined group judgment. Although the accuracy, calibration, and informativeness of the majority of methods are very similar, a couple of the aggregation methods consistently distinguish themselves as among the best or worst. Moreover, the majority of methods outperform the usual benchmarks provided by the simple average or the median of estimates

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Predicting and reasoning about replicability using structured groups

    No full text
    This paper explores judgements about the replicability of social and behavioural sciences research and what drives those judgements. Using a mixed methods approach, it draws on qualitative and quantitative data elicited from groups using a structured approach called the IDEA protocol (‘investigate’, ‘discuss’, ‘estimate’ and ‘aggregate’). Five groups of five people with relevant domain expertise evaluated 25 research claims that were subject to at least one replication study. Participants assessed the probability that each of the 25 research claims would replicate (i.e. that a replication study would find a statistically significant result in the same direction as the original study) and described the reasoning behind those judgements. We quantitatively analysed possible correlates of predictive accuracy, including self-rated expertise and updating of judgements after feedback and discussion. We qualitatively analysed the reasoning data to explore the cues, heuristics and patterns of reasoning used by participants. Participants achieved 84% classification accuracy in predicting replicability. Those who engaged in a greater breadth of reasoning provided more accurate replicability judgements. Some reasons were more commonly invoked by more accurate participants, such as ‘effect size’ and ‘reputation’ (e.g. of the field of research). There was also some evidence of a relationship between statistical literacy and accuracy

    Unexpected coupling of Cp and two RNC ligands at a {Mo-2(mu-SMe)(3)} nucleus

    No full text
    cited By 21International audienceReaction of the bis-isonitrile complex [Mo2-Cp2(μ-SMe)3(t-BuNC)2] (BF4) (1) with n-BuLi (in hexane) produced the dealkylated derivative [Mo2Cp2(μ-SMe)3-(t-BuNC)(CN)] (2) in quantitative yield. However, upon treatment with either NaOH (suspension) or (Me4N)OH (in MeOH), 1 was converted into a mixture of 2 and the μ-alkylidyne species [Mo2Cp(μ-SMe)3μ-(η5-C5 H4)(t-BuN)-CN(t-Bu)C] (3), in which a deprotonated Cp and both isonitrile ligands of 1 are now linked by new carbon-carbon and carbon-nitrogen bonds
    corecore