52 research outputs found

    A new quantum fluid at high magnetic fields in the marginal charge-density-wave system α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (where M=M=~K and Rb)

    Full text link
    Single crystals of the organic charge-transfer salts α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 have been studied using Hall-potential measurements (M=M=K) and magnetization experiments (MM = K, Rb). The data show that two types of screening currents occur within the high-field, low-temperature CDWx_x phases of these salts in response to time-dependent magnetic fields. The first, which gives rise to the induced Hall potential, is a free current (jfree{\bf j}_{\rm free}), present at the surface of the sample. The time constant for the decay of these currents is much longer than that expected from the sample resistivity. The second component of the current appears to be magnetic (jmag{\bf j}_{\rm mag}), in that it is a microscopic, quasi-orbital effect; it is evenly distributed within the bulk of the sample upon saturation. To explain these data, we propose a simple model invoking a new type of quantum fluid comprising a CDW coexisting with a two-dimensional Fermi-surface pocket which describes the two types of current. The model and data are able to account for the body of previous experimental data which had generated apparently contradictory interpretations in terms of the quantum Hall effect or superconductivity.Comment: 13 pages, 11 figure

    Potassium acetate solution as a promising option to osmotic distillation for sour cherry (Prunus cerasus L.) juice concentration

    Get PDF
    Different osmotic agents (OA), such as potassium acetate (CH3COOK), potassium carbonate (K2CO3) and ammonium nitrate (NH4NO3), have been examined as alternatives to the traditionally used calcium chloride (CaCl2) for osmotic distillation concentrating of clarified and pre-concentrated sour cherry (Prunus cerasus L.) juice. Comparison of the process performances based on the permeate fluxes has been carried out. Regarding the permeate flux results, simplified estimation of the overall mass transfer coefficient of the most effective osmotic agent and the reference (CaCl2) solution has been also performed. Furthermore, analytical methods such as total antioxidant activity (TAA) and total polyphenolic content (TPC) using spectrophotometric assays have been also carried out to evaluate the effect of the osmotic distillation on the valuable compounds content of concentrated sour cherry juice. CH3COOK was found to be the most effective, resulted more than 25% higher permeate flux during the sour cherry juice concentration. K2CO3 and NH4NO3 were less effective. The simplified mass transfer estimation showed that the CH3COOK is more effective only at near saturated concentrations compared to the CaCl2. Regarding the TAA and TPC contents, a significant loss was found in case of all OAs during the concentration procedures

    Effect of light, food additives and heat on the stability of sorghum 3-deoxyanthocyanins in model beverages.

    Get PDF
    This work aimed to evaluate the stability of sorghum 3-deoxyanthocyanins (DXA) in model beverages (pH 3.5) elaborated with crude sorghum phenolic extract, containing ascorbic acid and sulphite, under fluorescent light exposure and subjected to heat treatment. There was no significant difference in the DXA degradation during storage under light exposure (24.16%) and absence of light (20.72%). DXA degradation did not differ in the presence of ascorbic acid during storage under light exposure (23.99-25.38%) and absence of light (19.87-21.74%). The addition of sulphite caused an initial bleaching reaction, but as a reversible reaction, the anthocyanin content was higher on the last day of storage compared to the first day. There were no significant differences in total anthocyanin content of all treatments subjected to the heat treatment (80 °C for 5 and 25 min). Thus, crude DXA are very stable under light, additives and heat, and may be useful as natural food colourants

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    ICTs in Special Education: A Review

    No full text
    Abstract. The use of information communication technologies (ICTs) in a special educational needs (SEN) environment has gathered accumulative evidence around it during the last decade (2001-2010). In many settings ICT has become an important element of the learning and teaching process. ICT assessment tools can better recognize and integrate learning difficulties across students, while computer-based intervention tools can play a significant role in a child’s life. In this report we provide a brief overview of the most representative articles for applications used for assessment and intervention purpose after classifying them according to the areas of needs they serve

    Current status of pesticides application and their residue in the water environment in Ireland

    No full text
    Pesticides have been listed by the Irish Environmental Protection Agency as potentially dangerous pollutants that may pose a significant risk to the water environment in the Republic of Ireland (ROI). Although this analysis of pesticides data was based on the existing pesticides application survey in ROI, this study aims to produce a geographical information system profile for the amount of pesticides used in agriculture and the distribution of their use in different parts of the country. The study identifies and reports on the six most widely used pesticides in ROI, they are MCPA, Glyphosate, Chlorothalonil, Mecoprop-P, Chlormequat and Mancozeb. More significantly, the study discusses the application of pesticides and their potential impact on the Irish water environment by examining the status of pesticide residue in the Irish water environment. Finally, the study surveys possible strategies for the removal of pesticides residues, with attention to some of the studies done worldwide.Deposited by bulk impor

    Structural Studies Reveal the Functional Modularity of the Scc2-Scc4 Cohesin Loader

    Get PDF
    The remarkable accuracy of eukaryotic cell division is partly maintained by the cohesin complex acting as a molecular glue to prevent premature sister chromatid separation. The loading of cohesin onto chromosomes is catalyzed by the Scc2-Scc4 loader complex. Here, we report the crystal structure of Scc4 bound to the N terminus of Scc2 and show that Scc4 is a tetratricopeptide repeat (TPR) superhelix. The Scc2 N terminus adopts an extended conformation and is entrapped by the core of the Scc4 superhelix. Electron microscopy (EM) analysis reveals that the Scc2-Scc4 loader complex comprises three domains: a head, body, and hook. Deletion studies unambiguously assign the Scc2N-Scc4 as the globular head domain, whereas in vitro cohesin loading assays show that the central body and the hook domains are sufficient to catalyze cohesin loading onto circular DNA, but not chromatinized DNA in vivo, suggesting a possible role for Scc4 as a chromatin adaptor
    • 

    corecore