85 research outputs found
H-magnetic resonance spectroscopy. diagnostic tool in recurrent headache in systemic lupus erythematosus. a case report
We describe serial MR-spectroscopy studies in a patient with systemic lupus erythematosus and headache. We used MR-spectroscopy to monitor disease activity during periods with and without headache. MR-spectroscopy investigates metabolic alterations and was used to explore the pathophysiological mechanism involved in the complications of systemic lupus erythematosus. Our patient underwent serial conventional MRI and MR-spectroscopy at times of controlled and uncontrolled headache, with or without visual aura. MR-spectroscopy showed an increase in the choline/creatine ratio in thalamus and posterior white matter only during periods of uncontrolled headache with visual aura. Conventional MRI scans were normal at all times. MR-spectroscopy should be used in the diagnosis and follow-up of headache in patients with systemic lupus erythematosus
Dynamic changes of mmp-9 plasma levels correlate with jvc reactivation and immune activation in natalizumab-treated multiple sclerosis patients
The aim of the study was to investigate the changes of matrix metalloproteinase (MMP)-2 and MMP-9 plasma levels during natalizumab treatment and their correlation with JC virus (JCV) reactivation and T-lymphocyte phenotypic modifications in peripheral blood samples from 34 relapsing-remitting multiple sclerosis (RRMS) patients. MMP-9 levels were assessed by zymography in plasma samples. JCV-DNA was detected through quantitative real time PCR in plasma samples. T-lymphocyte phenotype was assessed with flow cytometry. MMP-9 plasma levels resulted increased from 12 to 24 natalizumab infusions. Stratifying plasma samples according to JCV-DNA detection, MMP-9 plasma levels were significantly increased in JCV-DNA positive than JCV-DNA negative samples. MMP-9 plasma levels resulted positively correlated with JCV viral load. CD4 immune senescence, CD8 immune activation and CD8 effector percentages were positively correlated to MMP-9 plasma levels, whereas a negative correlation between CD8 naïve percentages and MMP-9 plasma levels was found. Our data indicate an increase of MMP-9 plasma levels between 12 and 24 natalizumab infusions and a correlation with JCV-DNA detection in plasma, T-lymphocyte immune activation and senescence. These findings could contribute to understand PML pathogenesis under natalizumab treatment, suggesting a potential role of MMP-9 as a predictive marker of PML in RRMS patients
JC virus-DNA detection is associated with CD8 fffector accumulation in peripheral blood of patients with multiple sclerosis under natalizumab treatment, independently from JC virus serostatus
Although natalizumab (anti-α4 integrin) represents an effective therapy for relapsing remitting multiple sclerosis (RRMS), it is associated with an increased risk of developing progressive multifocal leukoencephalopathy (PML), caused by the polyomavirus JC (JCV). The aim of this study was to explore natalizumab-induced phenotypic changes in peripheral blood T-lymphocytes and their relationship with JCV reactivation. Forty-four patients affected by RRMS were enrolled. Blood and urine samples were classified according to natalizumab infusion number: 0 (N0), 1-12 (N12), 13-24 (N24), 25-36 (N36), and over 36 (N > 36) infusions. JCV-DNA was detected in plasma and urine. T-lymphocyte phenotype was evaluated with flow cytometry. JCV serostatus was assessed. Ten healthy donors (HD), whose ages and sexes matched with the RRMS patients of the N0 group, were enrolled. CD8 effector (CD8 E) percentages were increased in natalizumab treated patients with detectable JCV-DNA in plasma or urine compared to JCV-DNA negative patients (JCV-) (p < 0.01 and p < 0.001, resp.). Patients with CD8 E percentages above 10.4% tended to show detectable JCV-DNA in plasma and/or urine (ROC curve p = 0.001). The CD8 E was increased when JCV-DNA was detectable in plasma or urine, independently from JCV serology, for N12 and N24 groups (p < 0.01). As long as PML can affect RRMS patients under natalizumab treatment with a negative JCV serology, the assessment of CD8 E could help in the evaluation of JCV reactivation
Structural basis for the magnesium-dependent activation of transketolase from Chlamydomonas reinhardtii
Background In photosynthetic organisms, transketolase (TK) is involved in the Calvin-Benson cycle and participates to the regeneration of ribulose-5-phosphate. Previous studies demonstrated that TK catalysis is strictly dependent on thiamine pyrophosphate (TPP) and divalent ions such as Mg2 +. Methods TK from the unicellular green alga Chlamydomonas reinhardtii (CrTK) was recombinantly produced and purified to homogeneity. Biochemical properties of the CrTK enzyme were delineated by activity assays and its structural features determined by CD analysis and X-ray crystallography. Results CrTK is homodimeric and its catalysis depends on the reconstitution of the holo-enzyme in the presence of both TPP and Mg2 +. Activity measurements and CD analysis revealed that the formation of fully active holo-CrTK is Mg2 +-dependent and proceeds with a slow kinetics. The 3Dâstructure of CrTK without cofactors (CrTKapo) shows that two portions of the active site are flexible and disordered while they adopt an ordered conformation in the holo-form. Oxidative treatments revealed that Mg2 +participates in the redox control of CrTK by changing its propensity to be inactivated by oxidation. Indeed, the activity of holo-form is unaffected by oxidation whereas CrTK in the apo-form or reconstituted with the sole TPP show a strong sensitivity to oxidative inactivation. Conclusion These evidences indicate that Mg2 +is fundamental to allow gradual conformational arrangements suited for optimal catalysis. Moreover, Mg2 +is involved in the control of redox sensitivity of CrTK. General significance The importance of Mg2 +in the functionality and redox sensitivity of CrTK is correlated to light-dependent fluctuations of Mg2 +in chloroplasts
P3ht-Graphene Device for the Restoration of Visual Properties in a Rat Model of Retinitis Pigmentosa
Retinal degeneration is one of the prevalent causes of blindness worldwide, for which no effective treatment has yet been identified. Inorganic photovoltaic devices have been investigated for visual restoration in advanced stage Retinitis pigmentosa (RP), although lack of implant flexibility and foreign-object reactions have limited their application. Organic photoactive retinal prostheses may overcome these limitations, being biomimetic and tissue friendly. Inspired by organic photovoltaic strategies involving graphene, a hybrid retinal pros- thesis is recently engineered consisting of a dual poly-3-hexylthiophene (P3HT) and graphene layer onto a flexible substrate. Here, this hybrid prosthesis is subretinally implanted in vivo in 5-month-old Royal College of Surgeons (RCS) rats, a rodent model of RP. Implanted dystrophic rats restored visual perfor- mances at both subcortical and cortical levels in response to light stimuli, in the absence of marked inflammatory responses. Moreover, the analysis of the physical-mechanical properties after prolonged permanence in the eye showed excellent biocompatibility and robustness of the device. Overall, the results demonstrate that graphene-enhanced organic photovoltaic devices can be suit- ably employed for the rescue of retinal dystrophies and supports the transla- tion of the organic strategy into medical practice
Natalizumab affects T-cell phenotype in multiple sclerosis: implications for JCV reactivation
The anti-CD49d monoclonal antibody natalizumab is currently an effective therapy against the relapsing-remitting form of multiple sclerosis (RRMS). Natalizumab therapeutic efficacy is limited by the reactivation of the John Cunningham polyomavirus (JCV) and development of progressive multifocal leukoencephalopathy (PML). To correlate natalizumab-induced phenotypic modifications of peripheral blood T-lymphocytes with JCV reactivation, JCV-specific antibodies (serum), JCV-DNA (blood and urine), CD49d expression and relative abundance of peripheral blood T-lymphocyte subsets were longitudinally assessed in 26 natalizumab-treated RRMS patients. Statistical analyses were performed using GraphPad Prism and R. Natalizumab treatment reduced CD49d expression on memory and effector subsets of peripheral blood T-lymphocytes. Moreover, accumulation of peripheral blood CD8+ memory and effector cells was observed after 12 and 24 months of treatment. CD4+ and CD8+ T-lymphocyte immune-activation was increased after 24 months of treatment. Higher percentages of CD8+ effectors were observed in subjects with detectable JCV-DNA. Natalizumab reduces CD49d expression on CD8+ T-lymphocyte memory and effector subsets, limiting their migration to the central nervous system and determining their accumulation in peripheral blood. Impairment of central nervous system immune surveillance and reactivation of latent JCV, can explain the increased risk of PML development in natalizumab-treated RRMS subjects
Peripheral blood biomarkers in multiple sclerosis.
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heteroge-neity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpre-dictable response to therapies. The major focus of the research on MS is the identification of biomarkers inbiologicalfluids, such as cerebrospinalfluid or blood, to guide patient management reliably. Because of the diffi-culties in obtaining spinalfluid samples and the necessity for lumbar puncture to make a diagnosis has reduced,the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However,currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkerscould radically alter the management of MS at critical phases of the disease spectrum, allowing for interventionstrategies that may prevent evolution to long-term neurological disability. This article provides an overview ofthis researchfield and focuses on recent advances in blood-based biomarker researc
Congenital extrahepatic portosystemic shunts (Abernethy malformation): An international observational study
Congenital extrahepatic portosystemic shunt (CEPS) or Abernethy malformation is a rare condition in which splanchnic venous blood bypasses the liver draining directly into systemic circulation through a congenital shunt. Patients may develop hepatic encephalopathy (HE), pulmonary hypertension (PaHT), or liver tumors, among other complications. However, the actual incidence of such complications is unknown, mainly because of the lack of a protocolized approach to these patients. This study characterizes the clinical manifestations and outcome of a large cohort of CEPS patients with the aim of proposing a guide for their management. This is an observational, multicenter, international study. Sixty-six patients were included; median age at the end of follow-up was 30 years. Nineteen patients (28%) presented HE. Ten-, 20-, and 30-year HE incidence rates were 13%, 24%, and 28%, respectively. No clinical factors predicted HE. Twenty-five patients had benign nodular lesions. Ten patients developed adenomas (median age, 18 years), and another 8 developed HCC (median age, 39 years). Of 10 patients with dyspnea, PaHT was diagnosed in 8 and hepatopulmonary syndrome in 2. Pulmonary complications were only screened for in 19 asymptomatic patients, and PaHT was identified in 2. Six patients underwent liver transplantation for hepatocellular carcinoma or adenoma. Shunt closure was performed in 15 patients with improvement/stability/cure of CEPS manifestations. Conclusion: CEPS patients may develop severe complications. Screening for asymptomatic complications and close surveillance is needed. Shunt closure should be considered both as a therapeutic and prophylactic approach
Neurosphere-Derived Cells Exert a Neuroprotective Action by Changing the Ischemic Microenvironment
BACKGROUND: Neurosphere-derived cells (NC), containing neural stem cells, various progenitors and more differentiated cells, were obtained from newborn C57/BL6 mice and infused in a murine model of focal ischemia with reperfusion to investigate if: 1) they decreased ischemic injury and restored brain function; 2) they induced changes in the environment in which they are infused; 3) changes in brain environment consequent to transient ischemia were relevant for NC action. METHODOLOGY/PRINCIPAL FINDINGS: NC were infused intracerebroventricularly 4 h or 7 d after 30 min middle cerebral artery occlusion. In ischemic mice receiving cells at 4 h, impairment of open field performance was significantly improved and neuronal loss significantly reduced 7–14 d after ischemia compared to controls and to ischemic mice receiving cells at 7 d. Infusion of murine foetal fibroblast in the same experimental conditions was not effective. Assessment of infused cell distribution revealed that they migrated from the ventricle to the parenchyma, progressively decreased in number but they were observable up to 14 d. In mice receiving NC at 7 d and in sham-operated mice, few cells could be observed only at 24 h, indicating that the survival of these cells in brain tissue relates to the ischemic environment. The mRNA expression of trophic factors such as Insulin Growth Factor-1, Vascular Endothelial Growth Factor-A, Transforming Growth Factor-β1, Brain Derived Neurotrophic Factor and Stromal Derived Factor−1α, as well as microglia/macrophage activation, increased 24 h after NC infusion in ischemic mice treated at 4 h compared to sham-operated and to mice receiving cells at 7 d. CONCLUSIONS/SIGNIFICANCE: NC reduce functional impairment and neuronal damage after ischemia/reperfusion injury. Several lines of evidence indicate that the reciprocal interaction between NC and the ischemic environment is crucial for NC protective actions. Based on these results we propose that a bystander control of the ischemic environment may be the mechanism used by NC to rapidly restore acutely injured brain function
- …