594 research outputs found

    Consumed with Sleep? Dormant Bodies in Consumer Culture

    Get PDF
    Abstract: This paper takes the neglected sociological matter of sleep and applies the insights contained therein to issues and debates within the sociology of consumption. Sleep, it is argued, is pursued if not consumed in a variety of ways in consumer culture, including its (lifestyle) associations with health and beauty, leisure and pleasure. It is also increasingly recognised if not contracted for in the workplace, construed as the 'ultimate performance enhancer' and the 'cheapest form of stress relief'. These and other insights are located in the context of a burgeoning 'sleep industry' and the consumer identities it spawns: one which is busy capitalising on this dormant third part of our lives through a range of products, from beds to bedding, night-wear to night-cream, pills to pillows. Sleep, it is concluded, is a crucial element of consumption, augmenting existing theoretical and empirical agendas in significant new ways. The broader sociological implications of sleep are also touched upon and addressed, as a stimulus to further research, discussion and debate.Beauty; Consumption; Health; Leisure; Sleep; Work

    Discursive design thinking: the role of explicit knowledge in creative architectural design reasoning

    Get PDF
    The main hypothesis investigated in this paper is based upon the suggestion that the discursive reasoning in architecture supported by an explicit knowledge of spatial configurations can enhance both design productivity and the intelligibility of design solutions. The study consists of an examination of an architect’s performance while solving intuitively a well-defined problem followed by an analysis of the spatial structure of their design solutions. One group of architects will attempt to solve the design problem logically, rationalizing their design decisions by implementing their explicit knowledge of spatial configurations. The other group will use an implicit form of such knowledge arising from their architectural education to reason about their design acts. An integrated model of protocol analysis combining linkography and macroscopic coding is used to analyze the design processes. The resulting design outcomes will be evaluated quantitatively in terms of their spatial configurations. The analysis appears to show that an explicit knowledge of the rules of spatial configurations, as possessed by the first group of architects can partially enhance their function-driven judgment producing permeable and well-structured spaces. These findings are particularly significant as they imply that an explicit rather than an implicit knowledge of the fundamental rules that make a layout possible can lead to a considerable improvement in both the design process and product. This suggests that by externalizing th

    Soil to Sail - Asteroid Landers on Near-Term Sailcraft as an Evolution of the GOSSAMER Small Spacecraft Solar Sail Concept for In-Situ Characterization

    Get PDF
    Any effort which intends to physically interact with specific asteroids requires understanding at least of the composition and multi-scale structure of the surface layers, sometimes also of the interior. Therefore, it is necessary first to characterize each target object sufficiently by a precursor mission to design the mission which then interacts with the object. In small solar system body (SSSB) science missions, this trend towards landing and sample-return missions is most apparent. It also has led to much interest in MASCOT-like landing modules and instrument carriers. They integrate at the instrument level to their mothership and by their size are compatible even with small interplanetary missions. The DLR-ESTEC GOSSAMER Roadmap NEA Science Working Groups‘ studies identified Multiple NEA Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The parallel Solar Polar Orbiter (SPO) study showed the ability to access any inclination and a wide range of heliocentric distances. It used a separable payload module conducting the SPO mission after delivery by sail to the proper orbit. The Displaced L1 (DL1), spaceweather early warning mission study, outlined a very lightweight sailcraft operating close to Earth, where all objects of interest to planetary defence must pass. These and many other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter. Since the original MNR study, significant progress has been made to explore the performance envelope of near-term solar sails for multiple NEA rendezvous. However, although it is comparatively easy for solar sails to reach and rendezvous with objects in any inclination and in the complete range of semi-major axis and eccentricity relevant to NEOs and PHOs, it remains notoriously difficult for sailcraft to interact physically with a SSSB target object as e.g. the HAYABUSA missions do. The German Aerospace Center, DLR, recently brought the GOSSAMER solar sail deployment technology to qualification status in the GOSSAMER-1 project and continues the development of closely related technologies for very large deployable membrane-based photovoltaic arrays in the GOSOLAR project, on which we report separately. We expand the philosophy of the GOSSAMER solar sail concept of efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions. These are equally useful for planetary defence scenarios, SSSB science and NEO utilization. We outline the technological concept used to complete such missions and the synergetic integration and operation of sail and lander. We similarly extend the philosophy of MASCOT and use its characteristic features as well as the concept of Constraints-Driven Engineering for a wider range of operations. For example, the MASCOT Mobility hopping mechanism has already been adapted to the specific needs of MASCOT2. Utilizing sensors as well as predictions, those actuators could in a further development be used to implement anti-bouncing control schemes, by counteracting with the lander‘s rotation. Furthermore by introducing sudden jerk into the lander by utilization of the mobility, layers of loose regolith can be swirled up for sampling

    The distribution of different classes of nuclear localization signals (NLSs) in diverse organisms and the utilization of the minor NLS-binding site in plant nuclear import factor importin-α

    Get PDF
    The specific recognition between the import receptor importin-α and the nuclear localization signals (NLSs) is crucial to ensure the selective transport of cargoes into the nucleus. NLSs contain one or two clusters of positively-charged amino-acids, which usually bind to the major (monopartite NLSs) or both minor and major NLS-binding sites (bipartite NLSs). In our recent study, we determined the structure of importin-α1a from rice (Oryza sativa), and made two observations that suggest an increased utilization of the minor NLS-binding site in this protein. First, unlike the mammalian protein, both the major and minor NLS-binding sites are auto-inhibited in the unliganded rice protein. Second, we showed that NLSs of the 'plant-specific' class preferentially bind to the minor NLS-binding site of rice importin-α. Here, we show that a distinct group of 'minor site-specific' NLSs also bind to the minor site of the rice protein. We further show a greater enrichment of proteins containing these plant-specific' and 'minor site-specific' NLSs in the rice proteome. However, the analysis of the distribution of different classes of NLSs in diverse eukaryotes shows that in all organisms, the minor site-specific NLSs are much less prevalent than the classical monopartite and bipartite NLSs

    A Coverage Criterion for Spaced Seeds and its Applications to Support Vector Machine String Kernels and k-Mer Distances

    Get PDF
    Spaced seeds have been recently shown to not only detect more alignments, but also to give a more accurate measure of phylogenetic distances (Boden et al., 2013, Horwege et al., 2014, Leimeister et al., 2014), and to provide a lower misclassification rate when used with Support Vector Machines (SVMs) (On-odera and Shibuya, 2013), We confirm by independent experiments these two results, and propose in this article to use a coverage criterion (Benson and Mak, 2008, Martin, 2013, Martin and No{\'e}, 2014), to measure the seed efficiency in both cases in order to design better seed patterns. We show first how this coverage criterion can be directly measured by a full automaton-based approach. We then illustrate how this criterion performs when compared with two other criteria frequently used, namely the single-hit and multiple-hit criteria, through correlation coefficients with the correct classification/the true distance. At the end, for alignment-free distances, we propose an extension by adopting the coverage criterion, show how it performs, and indicate how it can be efficiently computed.Comment: http://online.liebertpub.com/doi/abs/10.1089/cmb.2014.017

    Preliminary Orbit of the Young Binary Haro 1-14c

    Full text link
    Using the Keck Interferometer, we spatially resolved the orbit of the pre-main sequence binary, Haro 1-14c, for the first time. We present these interferometric observations along with additional spectroscopic radial velocity measurements of the components. We performed a simultaneous orbit fit to the interferometric visibilities and the radial velocities of Haro 1-14c. Based on a statistical analysis of the possible orbital solutions that fit the data, we determined component masses of M_1 = 0.96 (+0.27/-0.08) Msun and M_2 = 0.33 (+0.09/-0.02) Msun for the primary and secondary, respectively, and a distance to the system of 111 (+19/-18) pc. The distance measurement is consistent with the close distance estimates of the Ophiuchus molecular cloud. Comparing our results with evolutionary tracks suggests an age of 3-4 Myr for Haro 1-14c. With additional interferometric measurements to improve the uncertainties in the masses and distance, we expect the low-mass secondary to provide important empirical data for calibrating the theoretical evolutionary tracks for pre-main sequence stars.Comment: 28 pages, 9 figures, accepted for publication in A

    Dynamical Measurements of the Young Upper Scorpius Triple NTTS 155808-2219

    Full text link
    The young, low-mass, triple system NTTS 155808-2219 (ScoPMS 20) was previously identified as a ~17-day period single-lined spectroscopic binary with a tertiary component at 0.21 arcseconds. Using high-resolution infrared spectra, acquired with NIRSPEC on Keck II, both with and without adaptive optics, we measured radial velocities of all three components. Reanalysis of the single-lined visible light observations, made from 1987 to 1993, also yielded radial velocity detections of the three stars. Combining visible light and infrared data to compute the orbital solution produces orbital parameters consistent with the single-lined solution and a mass ratio of q = 0.78 +/- 0.01 for the SB. We discuss the consistency between our results and previously published data on this system, our radial-velocity analysis with both observed and synthetic templates, and the possibility that this system is eclipsing, providing a potential method for the determination of the stars' absolute masses. Over the ~20 year baseline of our observations, we have measured the acceleration of the SB's center-of-mass in its orbit with the tertiary. Long-term, adaptive optics imaging of the tertiary will eventually yield dynamical data useful for component mass estimates.Comment: 6 Tables, 8 Figures, updated to match published tex

    Structure and Function of the TIR Domain from the Grape NLR Protein RPV1

    Get PDF
    The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR) domain has been shown to be both necessary and sufficient for defense signaling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signaling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signaling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices ("AE" interface). This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signaling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signaling.This research was supported by the Australian Research Council (ARC) Discovery Projects DP120100685 and DP160102244. BK is a NHMRC Research Fellow (1003325 and 1110971). SW is funded by ARC DECRA (DE160100893)

    Hunting for millimeter flares from magnetic reconnection in pre-main sequence spectroscopic binaries

    Get PDF
    Recent observations of the low-mass pre-main sequence, eccentric spectroscopic binaries DQ Tau and V773 Tau A reveal that their millimeter spectrum is occasionally dominated by flares from non-thermal emission processes. The transient activity is believed to be synchrotron in nature, resulting from powerful magnetic reconnection events when the separate magnetic structures of the binary components are capable of interacting and forced to reorganize, typically near periastron. We conducted the first systematic study of the millimeter variability toward a sample of 12 PMS spectroscopic binaries with the aim to characterize the proliferation of flares amongst sources likely to experience similar interbinary reconnection events. The source sample consists of short-period, close-separation binaries that possess either a high orbital eccentricity or a circular orbit. Using the MAMBO2 array on the IRAM 30m telescope, we carried out continuous monitoring at 1.25 mm over a 4-night period during which all of the high-eccentricity binaries approached periastron. We also obtained simultaneous optical VRI measurements, since a strong link is often observed between stellar reconnection events and optical brightenings. UZ Tau E is the only source to be detected at millimeter wavelengths: it exhibited significant variation; it is also the only source to undergo strong simultaneous optical variability. The binary possesses the largest orbital eccentricity in the current sample, a predicted factor in star-star magnetic interaction events. With orbital parameters and variable accretion activity similar to DQ Tau, the millimeter behavior of UZ Tau E draws many parallels to the DQ Tau model for colliding magnetospheres. However, on the basis of our observations alone, we cannot determine whether the variability is repetitive, or if it could also be due to variable free-free emission in an ionized wind.Comment: 19 pages in referee format, 3 figures, 1 table, 3 on-line tables, accepted for publication in Astronomy and Astrophysic

    Higher-order calculations of electron-deuteron scattering in nuclear effective theory

    Get PDF
    Motivated by recent advances in the application of effective field theory techniques to light nuclei we revisit the problem of electron-deuteron scattering in these approaches. By sidestepping problems with the description of electron-nucleon scattering data in effective field theories, we show that the effective theory expansion for deuteron physics converges well over a wide range of momentum transfers. The resultant description of the physics of the two-nucleon system is good up to virtual photon momenta of order 700 MeV.Comment: 18 pages, 7 figure
    • 

    corecore