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Abstract

Motivated by recent advances in the application of effective field theory techniques to light nuclei we revisit the problem
of electron—deuteron scattering in these approaches. Applying Weinberg's power counting for two-nucleon processes to this
reaction leads, in the first instance, to an effective field theory expansion that does not converge for virtual photon momenta
of order 300 MeV. However, here we show that this breakdown is not the result of an inability to describe deuteron physics:
instead it results from the effective field theory’s failure to describe the nucleon’s isoscalar electromagnetic form factor once
these momentum transfers are reached. Analyzing ratios of deuteron to (isoscalar) nucleon form factors within the effective field
theory overcomes this difficulty. We show that when such an analysis is performed the effective theory expansion for deuteron
physics converges well up to virtual photon momenta of order 700 MeV, and agrees with experimental data for the deuteron
charge and quadrupole form factors over a similar range.

0 2003 Published by Elsevier B.V. Open access under.CC BY license,

PACS: 12.39.Fe; 25.30.Bf; 21.45.+v

1. Introduction (and three-)nucleon interaction [3]. Calculations of
electromagnetic form factors of these nuclei then

Electron scattering from nuclei has a long and reveal agreement with experimental data that is, in

rich history. In impulse approximation the charge 9eneral,verygood [4,5]. N

form factor probed in such experiments is the Fourier ~ Here we focus on the simplest non-trivial nucleus:

transform of the nuclear charge distribution, and so deuterium. Elastic scattering of unpolarized electrons

these measurements have often been regarded adfom deuterium results in a@ () differential cross-

independent tests of models of nuclear structure [1,2]. Séction:

In particular, the structure of nuclei witlh < 10 do do 5 5 0,

can now be calculated ab initio from a given two- 7o = gouo- [A(Q )+ B(Q )ta¥(§>]7 1)

wheref, is the electron scattering angle in the centre-
E-mail address; phillips@phy.ohiou.edu (D.R. Phillips). of-mass frame of the collisiory? = (p, — p.)? =
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—Q? is the (negative) virtuality of the (single) pho- by
ton exchanged between the electron and the nucleus,

anddo /d 2ot is the Mott cross-section for electro- 7o = ﬁw (12)
magnetic scattering from a point particle of chafge 1+2(x%+y)
and masdv,;. and so a measurement @, together with mea-

Deuterium is a spin-one nucleus and so has three surements ofA and B allows an extraction ofG¢
independent form factors. These are usually denotedand Gy, and hence a complete test of our theo-
by Gc, Gg, and Gy. They are related to Breit-  retical understanding of deuteron structure. Experi-
frame matrix elements of the deuteron electromagnetic ments over the last dozen years at Bates [8,9], Novosi-

current,J,,, through: birsk [10,11], NIKHEF [12-14], and Jefferson Lab-
1 oratory [15] have measuretyg in electron—deuteron
Gc = 3—((1|J°|1) + (0|J°|0> + (—1|J°|—1>), (2) scattering, and so facilitated experimental determina-
le] tions of the full set of deuteron structure functions
Go= 72(<0|J0|0> — <1|J0|1>)7 (3) over a kinematic range betweed = 0 and Q =
2lelnM] 1.5 GeV [16,17]. Modern nucleon—nucleon potentials,
1 n when combined with models for two-body contribu-
Gm=-— J2nle] (117710), (4) tions to the deuteron current, do a good job of repro-

ducing this data (see, e.g., [18-20]). An accurate rep-

where we have labeled the deuteron states by the oqontation of the isoscalar electromagnetic form fac-

projection of the deuteron spin along the direction of tor of the nucleon plays a crucial role in this success.

! — N2 2
the three-vectop, — p., andn = 0°/(4Mj). When For a thorough status report on the subject of electron—

demed. |r; th'sf way trr:ese r(]:harge, cs_uad_rupgle and yeyteron scattering we refer to three recent reviews
magnetic form factors have the normalizations: which discuss the subject [17,21,22].

Ge(0)=1 5 In this Letter we wish to address electron—deuteron
c(@=1, (5) ) ) : .
scattering data in the framework of effective theories
Go(0) = Qu. (6) of deuteron dynamics. This approach (for recent re-
0) = Ma 7 views, see Refs. [23,24]) is based on the use of a chiral
Gu0)=png—; (7) . ,
M expansion for the physics of the two-nucleon system.

whereQ, = 0.286 f? [6] is the deuteron quadrupole  Ultimately it shares many features with the more “tra-
moment, and.y = 0.85741 [7] is the deuteron mag- ditional”, and very successful, potential models. How-
netic moment in units of nuclear magnetons. ever, as first suggested by Weinberg [25-27], this “nu-

The experimental quantities and B can then be clear effective theory” is based on a systematic chiral

computed from theoretical models of deuterium, since @hd momentum expansion for the kernels of processes
in the NN system. Thus, for electron—deuteron scat-

A— G% + gnG% + §n2MjG2 8) tering we expand the deuteron currgptin operators
3 9 which are ordered according to their chiral dimension,
4 P
B = 5n(1+n)GY. @
oo
However, it was not until the development of experi- j, =¢ ZC" ilil ofj), (13)
ments with polarized deuterium targets that it became i1 A

possible to unambiguously extract bathr and G o 0 o
from electron—deuteron scattering data. The tensor- Where the operata®),” containsi — 1 powers of the

polarization observabldyo, is related to the ratios small parameterg (the momentum of the nucleons
inside deuterium)m,, and Q. The numbers; are,
x:g @, (10) a priori, assumed to be of order 1, amtl is the
3 Gc¢ scale of chiral symmetry breaking: ~ 4x fr, m,, M.
2 (Gu\’T1 0, Since the expectation value gf and the value of
y= §’7<G—C) [5 + 1+ ”)ta'"?<§)} 11) m, are both much smaller than it follows that,
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providedQ < A, and thecs really are of order one, with

this expansion should converge well. The expansion ie

parameterp, Q, m,)/A is denoted here by. Du=du— A+ dut--, (15)
The operators(’)fj) and the coefficients; are — it Uut (16)

. . T " )

constructed according to the well-established count-

ing rules and Lagrangian of chiral perturbation the- andv chosen to be = (1,0, 0, 0), so that:

ory [29]. Here we present results fafc andGo up o

to ordere P2, and results foiG; up to O(eP?). We §=(0,9); S= 2

go beyond the recent calculation of Ref. [28], which \ye 5150 choose the pion interpolating field such that:

computed all three form factors only up (e P?). o
We also demonstrate that the apparent failure of the W=l = exp(ir 7 ) (18)

EFT description seen in Ref. [28] at momentum trans- fr

fers of order 300 MeV comes not from two-nucleon 4 s the photon field. Note that we have omitted some

physics but from the poorconvergence _Of the isoscalar terms that are of higher-order in the pion field than we

nucleon form factor in chiral perturbation theory. In  ,aed for our calculation.

fact, provided that single-nucleon structure effects are 2 i i
P g The part ofL 7y relevant for our calculation is the

correctly included in the calculation, the nuclear effec- photon-nucleon piece. There we focus on the vertices,

tive theory is much more accurate than the results of suppressed by ordet Q/M, that govern the coupling

Ref. [28] might lead one to believe. Indeed, ultimately ot £1 and M1 photons to the nucleon [29]:

it describes all of the extant experimental datatan

andG o outto momentum transfers of order 700 MeV. @ _ N’rzi
M

(17)

[v-D)2—D-D]N

This is done as follows. In Section 2 we sketch "V
the derivation of J, from the counting rules of _i_eN’r[S S,
chiral perturbation theory, and give results for the 4M po
current at leading ordel) (¢), next-to-leading order X [(L+Kky)t3+ 1+ &) ]FF'N, (19)

0(eP?), and next-to-next-to-leading orded,(e P3).

In Section 3 we will discuss the wave functions used
in our calculation, and outline some of the issues
associated with the desire for consistency between the
deuteron current and the deuteron wave functions. In
Section 4 we will present our results fétc, Gy,

and Gy, as well as results for the deuteron’s static
propertiest;, Qq, and the deuteron charge radius. We
conclude in Section 5.

with F,, the electromagnetic field strength tensar.
and «, are the isoscalar and isovector parts of the
anomalous magnetic moment of the nucleon. These
are known experimentally, and have the valués12

and 390, respectively.

There is also an important term whose coefficient
is entirely determined by reparameterization invari-
ance [30]. It occurs after the Foldy—Wouthysen trans-
formation is used to eliminate the lower-component of
the heavy-baryon field [29]:

tiga

2M

Employing the definitions above, then reorganizing

The heavy-baryon chiral perturbation theory the result by eliminating total derivatives and using the

(HBxPT) Lagrangian is organized according to the nucleon equation of motion, leads to the piece relevant
powers of P which appear in the classical Lagrange for our study:
density. The pieces of the leading-ordén(P)) heavy- , ega

baryon Lagrangian relevant to the computation to be L2, = === NTr7%((S - 8)v - A)N. (21)

TyN — 2M
presented here are: ] fx o ) )
The first occurrence of the finite electric radius of

@ " " the isoscalar nucleon occurs in chiral perturbation the-
Loy =N (iv-D)N +gaNu-SN, (14 ory as a coefficient in the Lagrangia]f]{,. Similarly,

@

2. Thedeuteron current Lew=—N {S-D,v-u}N. (20)
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the magnetic radius of the nucleon appears as a coef-

ficient in E)(f‘,{,. In both of these Lagrangians one also q

encounters terms arising from relativistic corrections

to the single-nucleon four-current. The coefficients of _

these structures are determined by reparameterization, /2 b/t Pt ’: -q/2
invariance, and can be found by taking the relativistic

current operator and using the standard procedure for —p—a/4

generating the non-relativistic one-body current oper-

ator as an expansion in powersygfi andQ/M (see, Breit frame for a generic one-body contribution g. This frame

for 'nStanC_e’ [5’431])' is chosen because in it the photon is purely space-like: (0, q).
Finally, in £ we encounter a two-nucleon oper-  Time runs from right to left.

ator representing a magnetic photon coupling to the
NN system [28,32]:

Fig. 1. Three momenta of the deuteron, photon, and nucleons in the

We now discuss the charge and current operators
in turn. Such a decomposition is, of course, not
Lorentz invariant, so here we make this specification

This short-distance two-body current will modify the N the Breit frame, where the three-momentum of the
magnetic moment of deuterium. deuteron and the nucleons is as shown in Fig. 1.

= —ieLp(NT[S,, S,IFFN)(NTN).  (22)

Similarly, in /:;3]2”\, there is an operator which rep- @
resents a quadrupole (E2) photon coupling toXheé Deuteron charge - The vertex fromC 3, which repre-
system [33] and so modifies the deuteron quadrupole SNtS aMo photon coupling to the.nucleon gives the
moment. At the same order there is also an operator l€@ding-order (LO) contribution tdo:
which modifies the deuteron charge radius [33]. 0)

! \ , 7O = el (23)

The vertices derived from the Lagrangians (14)— "0

(22) are then used to draw all possible Feynman di- This is depicted in Fig. 2(a).

agrams contributing to the proceg§ NN — NN. The most important correction tdy arises from
A particular Feynman diagram then leads to an oper- the insertions inC'%, which generate the nucleon’s
ator appearing in the sum (13). The powerpthat isoscalar charge radius. This gives a result Sigr

this operator possesses is defined by considering allthrougho (¢ P?):
parts of the amputated Feynman diagram representing

it, and multiplying together theP-scaling factors” of @) — || (1 _ }(rz )Qz) (24)
these separate pieces. These factors are defined as fol-Structure 6" Es ’
lows:

where (r%s) is the isoscalar charge radius of the

e Avertex fromLfT";, contributes a factor oP”. nucleon, for which we adopt the value:

e A vertex involving a photon fromL;”) , L;”;N, or (r%s) = (0.777 fm)2. (25)
n . _
L;Ii’N contributes a factor oP"~*.% (Note: 02 = g2 holds in the Breit frame.)

o Each pion propagator contributes a factorof?. Also present at this order are relativistic corrections
e Each nucleon propagator contributes a factor of tg the single-nucleon charge operator. To generate
P the “intrinsic” current operator which can be inserted
e Atwo-body graph has an additional factor Bf. between deuteron wave functions calculated in the
e Eachloop contributes a factor #*. two-nucleon center-of-mass frame we employ the

formalism of Adam and Arenhével, as described in
e Ref. [31]. The relativistic corrections then fall into
This peculiarity occurs because we pull out a factoe efhen . . . .
defining the operator®,, . If we countede ~ P then the counting two Catego,”‘?s-, CorreCtlonS coming from t,he expansion
for vertices involving photons would be exactly as for pion-nucleon  Of the relativistic single-nucleon current in powers of
interactions. p/M, and corrections due to the necessity of boosting
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O(e) O(eP?) O(eP?)
(a) (b)

Fig. 2. Diagrams representing the leading contribution to the deuteron charge operator (a), the leading two-body contrigutipnaiod the
dominant short-distance piece (c). Solid circles are vertices iﬂéjrj) and the shaded circle is the vertex fnﬂ’bz; y- The hatched square is

3
a four-nucleon vertex from:yNN.

the deuteron wave function from the frame where
P = 0 to the frame wher® = +q/2.

When the calculation is organized in this way the
dominant “relativistic effect” for momentum transfers
of order 500 MeV is a shift in the length af.
This “length contraction” accounts for a portion of
the boost of the deuteron wave function (for details,

see Refs. [20,31]). The net result is that whereas the

leading-order form facto ¢ can be represented as:

0
Gg>=|e|/

with y the deuteron wave function, @ (e P?) the

expression is:
w*(p I )w(p),
2J1+n

el [
(27)

wheren = 0?/(4M3%) was defined above. Here we
have not reproduced the terms which scalepasf,
and we have notincluded the terms from Eq. (24). The
sole effect written is the one arising from the boost
of the deuteron wave function, although all effects
occurring ato (e P2) are included in our computation.
This completes the discussion of mechanisms con-
tributing at O(eP?), or next-to-leading order. At
O (e P®)—next-to-next-to-leading order—the Lagran-
gian (14) generates a tree-level two-body graph with
an isoscalar structure, as shown in Fig. 2(b). This
two-body contribution ta/® was derived by Riska in
Ref. [34], using an argument based on matching to rel-
ativistic Born graphs for pion electroproduction. Here
it occurs in HB(PT as a natural consequence of the
Foldy—Wouthysen transformation which generates the

d3p
(2m)3

/a8 (p + g)w(m, (26)

d3p
(2m)3

2 _
GC boost™

relevantterm inC® . Importantly, the nuclear effective
theory also has the ability to organize the contribution
of two-body contributions, such as this, relative to the
contribution of one-body mechanisms.

Straightforward application of the Feynman rules
for the relevant pieces of the P T Lagrangian gives
the result for this piece of the deuteron current:

P17 @1p)

oa lelgi

1°2 8f7$M
wherep andp’ are the (Breit-frame) relative momenta
of the two nucleons in the initial and final-state,
respectively?

The short-distance two-body currents that con-
tribute to (r2) and Q, are depicted in Fig. 2(c). They
do not give a contribution unti (e P°). This suggests
that the charge operator is not particularly sensitive to
short-distance physics, since two-body effects of range
1/A are suppressed by five powerspfelative to the
LO result.

o1-qo2-(p—p +0/2)
m2 4+ (p — p' +0/2)2

+(1<—>2)i|,

(28)

Deuteron three-current  The counting for the isosca-
lar three-vector currenl was already considered in
detail by Park and collaborators [35). begins at

2 In terms of the notation of Ref. [42] the result (28) corresponds
to i = —1. This occurs because the field-theoretic manipulations
used to arrive at Eq. (28) assume that the fields represent physical
particles, i.e., they are on-shell. This choice has been the standard
one for computinggPT kernels for interactions with light nuclei,
see, e.g., [62,53].
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O(eP?)

(@) (b)

O(eP")

17

O(eP")
()

Fig. 3. An 0(eP3) loop diagram which ultimately does not generqt%dependence in the nucleon isoscalar form factor (a), and two
contributions of orde (e P%) ((b) and (c)). The hatched circle is a vertex froﬁfﬁ)w, while the shaded square is the vertex frﬁ@wM-

2 is:

O(eP). There the operator derived frody;,

IO = le|(p+a/2)/M +ipso x q, (29)

wherep — q/4 is the momentum of the struck nucleon,
as shown in Fig. 1, angs is the isoscalar magnetic
moment of the nucleon, whose value we take to be
ws = 0.88le|/(2M).

As in the case of/p, there are finite-size and rel-
ativistic corrections to Eq. (29) which are suppressed
by two powers ofP2. Thus, in this case they enter at
0(eP3), and represent the NLO corrections @;.
Loop graphs of the type depicted in Fig. 3(a) also en-
ter at this order. However, it can be shown that the only
effect of these loops on the isoscalsv current is
to renormalize the magnetic moment of the nucleon:
their isoscalar part does not have ajfydependence
(an analogous argument is given for real photons in
Ref. [35]).

At O(eP* [NNLO] two kinds of magnetic two-
body current enter the calculation. Park et al. have
pointed out that when magnetic photons interact with
deuterium there is a single-nuclegmr contact term
in ﬁf’;,\, [35]. The coefficient of this portion of the
chiral Lagrangian was fixed in Ref. [35] using the

KSRF relation and a resonance-saturation hypothesis.

Alternatively, this coefficient could also be fixed by
comparison to data—at least in principle. In either case
this ym NN vertex generates a pion-range two-body
current with a coefficient that is undetermined a priori,
as shown in Fig. 3(b).

Meanwhile, a number of authors [28,32,33,35,36],
have pointed out that the short-distance two-body op-
erator from the Lagrangian in Eq. (22) contributes to
J at O(eP?). It generates a “short-range” exchange-
current contribution taG ) (see Fig. 3(c)). Since this
is only suppressed by? relative to the leading con-

tributions toG »; we would expect y, to be markedly
more sensitive to details of the short-distance physics
thanG¢. Given the presence of two undetermined pa-
rameters at NNLO id we will only examine the lead-
ing and next-to-leading order predictions of the nu-
clear effective theory foG ;.

3. Deuteron wave functions

In order to define the computation completely it
remains only to specify the deuteron wave functions
which will be used for the evaluation of the matrix
elements in Eqgs. (2)-(4). Here we will use four
different kinds of wave function:

1. A “strict” chiral perturbation theory wave func-
tion, as derived in Ref. [37]. We generally employ
the NLO wave function, with the cutoff chosen to
be A = 600 MeV. We also use Epelbaum et al.’s
NLO wave function withA = 540 MeV for com-
parison.

. The NLO wave function of Ref. [38]. In this
calculation a specific choice of cutoff is made,
which allows for better accuracy in fittingg N
phase shifts. Certain relativistic corrections to the
NN potential are also included.

. The wave functions derived in Ref. [39] by “in-
tegrating in” the one-pion exchange potential
(OPEP) to a given radiuR. These should be re-
garded as very simplistic potential models for deu-
terium. They are, however, designed to produce
the correct values for the important deuteron prop-
ertiesAg, Ap, and B, as well as to include the
standard non-relativistic OPEP (with the “mod-
ern” coupling constant).
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4. The deuteron wave function obtained using the
Nijm93 meson-theoretic potential [40].

There is an important question of consistency with
the current for all of these wave functions. In par-
ticular, it is well known that the charge contribution
(28) is associated with so-called “relativistic correc-
tions” to the one-pion-exchange potentialJ[f‘) and
the terms in OPEP suppressed p%/ M? relative to
the leading behaviour are derived within a consistent
framework then the results for deuteron form factors
should be unitarily equivalent [41-43]. In fact, the au-
thors of Ref. [37] did not consider “relativistic correc-
tions” to one-pion exchange. They count®d~ A2
and so regarded the pieces of OPEP of relative order
p?/M? as being down by* compared with the lead-
ing piece of the chiralN N potential. Indeed, none of
the wave functions listed under numbers one, three,
and four above include any “relativistic corrections”
to one-pion exchange. Clearly a fully-consistent treat-
ment of the deuteron current andV potential inyPT
which incorporates what has been learned about uni-
tary equivalence [41-43] is necessary if a definitive re-
sult is to be established for electron—deuteron scatter-
ing in the nuclear effective theory.

Here our goal is less ambitious. We take wave func-
tions presently on the market and use the expansion
for the deuteron current discussed in Section 2 to gen-
erate results foG ¢, G o, andG . The error resulting
from inconsistencies in this procedure can be assesse
by comparing the results obtained with the wave func-
tions of Refs. [37,39,40] to those found using the “Ida-
ho” wave function of Ref. [38]. Of the wave functions
used here, only the “Idaho” wave function includes the
effect of relativistic corrections to one-pion exchange
of the type associated by unitary equivalence with the
two-body charge contribution (28).

4. Results

Strict chiral expansion The results of the leading-
order (LO), next-to-leading order (NLO), and next-
to-next-to-leading order calculations f@¥¢, using
the NLO xPT wave function of Ref. [37] withA =
600 MeV, are displayed in Fig. 4. Also shown there are
data from the compilation [16]. ThePT expansion for

Jo appears to be converging fgr< 600 MeV, but it

D.R. Phillips/ Physics Letters B 567 (2003) 12-22

10°
107"
GC
107
10° ) ) .l‘f )
0.0 200.0 400.0 600.0  800.0
Q (MeV)

Fig. 4. G¢ as calculated in the strickPT expansion forJy at
leading, next-to-leading, and next-to-next-to-leading order, plotted
against|q|. The experimental data is taken from the extraction of
Ref. [16]: upward triangles represent data from #»g measure-
ment of Ref. [10], open circle [13], solid circle [8], open squares
[14], downward triangles [11], star [12], solid squares [9], solid di-
amonds [15].

is not converging to the data. As was already observed
in the NLO calculations of Walzl and Mei3ner [28],
a strict chiral expansion of° does a poor job of
describing data o ¢ for 02 > 0.1 Ge\2.

The reason for this failure can be traced to the
jsoscalar nucleon form factor obtained PT [44].
hat form factor is:

=1-=

Gy (0% =1-¢

and it describes electron—nucleon scattering data only
up to 02 ~ 0.1 Ge\2. The inclusion of heavy mesons

in the chiral Lagrangian remedies this situation some-
what [45], but if we insist on a strig¢tPT expansion—

or even include explicit Delta degrees of freedom in
the theory [46]—our description of electron—deuteron
data will be limited byxPT’s difficulty in describing
single-nucleon isoscalar electromagnetic structure.

1 2

%) 0%, (30)

Factorization A solution to this problem is provided
by the factorization offp. Up to the order to which we
work the deuteron charge operator can be written as
the product of a piece that describes the current due to
structureless nucleons and a nucleon-structure piece:
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-——- LO: O(e)
©'|Jolp) = (lels@(p' — p = q/2) - NLO:O(eP?)
3 N(pn2 4 —— NNLO: O(eP?)
+ (P17 (@IP))GE (Q7) + O(ePT). 0 , , ,
@)Y (07) +0(eP?) e —
(31) G 107
(Relativistic corrections are not written here, but, at °1 0
this order, factorization is also valid for them.)
Here we focus on the ability of nuclear effective 107
theory to describe deuteron structure, and so we 107
choose to apply the chiral expansion to the ratios of G,
form factors: 107
Gc Go -3 ‘ ‘ . o
GN and GN (32) 10 00 2000 4000 6000 8000 1000.0
E E Q (MeV)

To do this we compute the ratido/Gy, i.e., the Fig. 5. G¢ and Gg (in units of fir?) calculated with nucleon
electric response of a deuterium nucleus containing structure effects included via factorization (at NLO and NNLO, LO
structureless nucleons. Then, in order to compare with is as before). The NLQPT deuteron wave function with = 600
the compilation [16], the ratios (32) are multiplied by MeV was used. Legend as in Fig. 4.
the parameterization o} found in Ref. [47]. The
results obtained by this procedure are shown in Fig. 5.
This time the expansion not only converges, provided
that 9 < 700 MeV, but also reproduces data on both
Gc andGg in this range ofQ. 10™
Expanding the quantities (32) in the effective the- 2"

ory sidestepgPT's problems in describing isoscalar ~x

nucleon structure. We find that the chiral expansion O 20

for these ratios is in good agreement with data. Since 107 0 8?;‘;2}3 7;; NS

these are the type of quantities which must be calcu- ——— O(eP®) R=1.5 fm + OPEP ¢

lated in order to extract nucleon-structure information

from deuteron data the results shown in Fig. 5 are quite " | . . .

encouraging in this regard. L " 00 2000 4000 6000 8000
Turning to the magnetic form factor, factorization Q (MeV)

also holds there, to the order to which we work, and so

we compute the chiral expansion for the rafio/ G%. Fig. 6. The deuteron magnetic form factor as calculated to LO with

Since we 0n|y calculatg t to NLO it is difficult to thexPT NLO wave function (short-dashed line) and NLO with the

xPT NLO wave function (solid line) and the = 1.5 fm + OPEP
wave function (long-dashed line). Factorization is used to include
nucleon structure in the NLO results. Experimental data from
deuteron magnetic moment, open triangle [7]; the parameterization
Estimating the size of short-distance effects In order of Ref. [17], open squares; and measurements3a9?): solid

to judge the sensitivity of this observable to short- circles [48], open diamonds [49], and stars [S0].

distance effects, in Fig. 6 we also show the result

for G, obtained with a simple short-distanee a short-distance effect. Such effects enter at NNLO in
OPEP wave function [39]. This wave function and this observable, and so the sizable impact of physics at
the xPT NLO wave function differ only at distances distances ~ 1/A on G, that is seen in Fig. 6 is not

r < 1/my, and so the red-dashed line’s agreement surprising.

with data to O ~ 900 MeV should be regarded as In contrast, short-distance contributionsGe and
fortuitous. From an EFT point of view, the difference G ¢ do not occur untilo (e P). As with G, we can
between the red-dashed and solid curves in Fig. 6 is estimate their impact by computing the form factors

judge the convergence of the series, but the description
of the data is quite good over the range< 500 MeV.



20 D.R. Phillips/ Physics Letters B 567 (2003) 12-22

10 —' Sy '_'A' T "k B e o i e i B T T
= ‘.t:\.\- .
8,
e

-1 ‘\

10 3 3
G E—— A=B00 MeV, NLO xPT
c I A=540 MeV, NLO xPT

10—2 | —-— NNLO Idaho

E - Nijm93
| ——- R=1.5fm + OPEP
R=2.5 fm + OPEP

10 f ‘

0.0 200.0 400.0 600.0 800.0 1000.0
Q (MeV)

Fig. 7. Results with different wave functions fatc and G o (in units of fn?). Solid black and gray lines are with wave functions from
Ref. [37], dot-dashed with that of [38], dotted [40], and dark and light gray long-dashed [39].

with different deuteron wave functions—see Fig. 7. Table 1

The results forG- and G are largely the same for Deutgron static properties computed with the NK®T wave

0 < 600 GeV. The most noticeable difference occurs function (4 =600 MeV) at LO, NLO, and NNLO. At NNLO

around the zero of~—a region where sensitivity to q can be exactly reproduced by adjusting the coefficieptin
. c - g - y Eqg. (22). (The numerical error in each quantity44 in the last

details of deuteron physics is well-established. significant figure quoted.)

Intriguingly, the band representing different as-

. . J ) J,, order rq (fm g (n.m. 0,4 (fm?
sumptions about short-distance physics is quite nar- == a (m) a (0-m) a ()
row out to values ofQ = 800 MeV whenGy is LO 1.975 0.8591 0.2660

~ Q0 NLO 1.984 0.8531 0.2641

considered. This suggests that the shapeGof is NNLO 1.987 Experiment 0.2764
not strongly affected by short-distance physics, and
higher-order corrections to it may well be small.
(A similar conclusion was reached without the use of Deuteron static properties  As far as deuteron static
nuclear effective theory in Ref. [51].) properties are concerned it is irrelevant how nucleon
The curves of Figs. 5-7 are not, strictly speaking, Structure is included in the calculation. We have
predictions ofxPT for Gc and Gg. In terms of the computed:
chiral expansion for these form factors a particular dGe
class of higher-order terms for electron—nucleon scat- (rdz) = _GF )
tering have been resummed: the class of terms respon- 0% lg2=0
sible for reproducing the “experimental}"g’. Never- when G¢ is calculated with structureless nucleons.
theless, the results of the procedure we have adoptedThe result forr, = (r2)¥/2 is shown in Table 1,
show that nuclear effective theory does a good job together with results for; and Q. Once again, the
of describingdeuteron structure—and especially the convergence of the expansion is very good, with the
deuteron charge distribution—out to surprisingly high leading-order result capturing most of the physics of
momentum transfers. these static properties.

(33)
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Table 2

Deuteron static properties at NNL@;(and Q;) and NLO («,) for a range of deuteron wave functions. At NNy can be reproduced
exactly

Experiment Nijm 93 xPT NLO NNLO Idaho OPER- short
A =600 MeV R=15fm
Ag (fm~1/2) 0.8846(8) 0.8842 0.869 0.885 0.8845
Ap/As 0.0256(4) 0.0252 0.0248 0.0245 0.0253
B (MeV) 2.224575(9) Fit 2.161 Fit 2.2246
rq (fm) 1.971(5) 1.979 1.987 1.984 1.975
g (n.m.) 0.857406(1) 0.848 0.853 0.847 0.847
0y (fm?) 0.2859(3) 0.280 0.276 0.291 0.280

In order to assess the sensitivity of these quantities difficulties in describingsoscalar nucleon structure.
to short-distance effects we have computgd wg, Applying a chiral expansion to the ratio of deuteron
and Q, with a variety of deuteron wave functions. and nucleon form factors yields NNLO results @¢
The results are summarized in Table 2 and agreementand G that agree with data t@ ~ 700 MeV. G¢

with experimental data is very good. The 0.5% andG ¢ are also relatively insensitive to short-distance
discrepancy inry is certainly consistent with the  physics over this range.
expected size of the* corrections omitted here, while The magnetic form factoi;; y;, was computed up

the ~ 1% discrepancy i, is perhaps less than one to NLO, and turns out to be more sensitive to short-
would naively expect, given the that effects of relative distance physics. This result is anticipated within
order P2 were not included in this computation of the the effective theory, since short-distance two-body
deuteron’s magnetic moment. currents are suppressed by three powerB oélative

On the other hand, it is apparent th@g is much to leading in Gy, but are down by two additional
more sensitive to short-distance physics than either  powers ofP in G¢ andGg.
or ug. Its value varies by about 5% between models Deuteron static properties are also well reproduced,
with the same pion-range, but different short-distance, althoughQ, shows significant variability when differ-
physics. The counterterm that would absorb this sen- ent assumptions about deuteron short-distance physics
sitivity is nominally of O (e P°), which we estimate to  are made. This may be associated with th@,*
be almost ten times smaller than is necessary to ab-puzzle”: the inability of modern potential models
sorb the variation seen in Table 2. Whether this coun- to reproduce the experimental value for this quan-
terterm should be promoted to a lower order—as has tity [5]. Any possible resolution of this puzzle within
been argued in Refs. [33,39]—cannot be properly de- the nuclear effective theory will require the computa-
termined until higher-order calculations 6f; are per- tion of higher-order effects idp, including two-pion-
formed and a systematic study of its renormalization- exchange contributions to the deuteron four-current.
group evolution is made.
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