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Abstract

Motivated by recent advances in the application of effective field theory techniques to light nuclei we revisit the p
of electron–deuteron scattering in these approaches. Applying Weinberg’s power counting for two-nucleon process
reaction leads, in the first instance, to an effective field theory expansion that does not converge for virtual photon m
of order 300 MeV. However, here we show that this breakdown is not the result of an inability to describe deuteron
instead it results from the effective field theory’s failure to describe the nucleon’s isoscalar electromagnetic form fac
these momentum transfers are reached. Analyzing ratios of deuteron to (isoscalar) nucleon form factors within the effe
theory overcomes this difficulty. We show that when such an analysis is performed the effective theory expansion for
physics converges well up to virtual photon momenta of order 700 MeV, and agrees with experimental data for the
charge and quadrupole form factors over a similar range.
 2003 Published by Elsevier B.V.
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1. Introduction

Electron scattering from nuclei has a long a
rich history. In impulse approximation the char
form factor probed in such experiments is the Fou
transform of the nuclear charge distribution, and
these measurements have often been regarde
independent tests of models of nuclear structure [1
In particular, the structure of nuclei withA � 10
can now be calculated ab initio from a given tw
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(and three-)nucleon interaction [3]. Calculations
electromagnetic form factors of these nuclei th
reveal agreement with experimental data that is
general, very good [4,5].

Here we focus on the simplest non-trivial nucle
deuterium. Elastic scattering of unpolarized electr
from deuterium results in anO(α2) differential cross-
section:

(1)
dσ

dΩ
= dσ

dΩMott

[
A

(
Q2) +B

(
Q2) tan2

(
θe

2

)]
,

whereθe is the electron scattering angle in the cent
of-mass frame of the collision,q2 = (p′

e − pe)
2 ≡
nse.
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−Q2 is the (negative) virtuality of the (single) pho
ton exchanged between the electron and the nuc
anddσ/dΩMott is the Mott cross-section for electro
magnetic scattering from a point particle of charge|e|
and massMd .

Deuterium is a spin-one nucleus and so has th
independent form factors. These are usually den
by GC , GQ, and GM . They are related to Breit
frame matrix elements of the deuteron electromagn
current,Jµ, through:

(2)GC = 1

3|e|
(〈1|J 0|1〉 + 〈0|J 0|0〉 + 〈−1|J 0|−1〉),

(3)GQ = 1

2|e|ηM2
d

(〈0|J 0|0〉 − 〈1|J 0|1〉),
(4)GM = − 1√

2η|e| 〈1|J+|0〉,

where we have labeled the deuteron states by
projection of the deuteron spin along the direction
the three-vectorp′

e − pe, andη ≡ Q2/(4M2
d ). When

defined in this way these charge, quadrupole
magnetic form factors have the normalizations:

(5)GC(0)= 1,

(6)GQ(0)=Qd,

(7)GM(0)= µd
Md

M
;

whereQd = 0.286 fm2 [6] is the deuteron quadrupo
moment, andµd = 0.85741 [7] is the deuteron mag
netic moment in units of nuclear magnetons.

The experimental quantitiesA andB can then be
computed from theoretical models of deuterium, sin

(8)A=G2
C + 2

3
ηG2

M + 8

9
η2M4

dG
2
Q,

(9)B = 4

3
η(1+ η)G2

M.

However, it was not until the development of expe
ments with polarized deuterium targets that it beca
possible to unambiguously extract bothGC andGQ

from electron–deuteron scattering data. The ten
polarization observable,T20, is related to the ratios

(10)x = 2

3
η
GQ

GC

,

(11)y = 2

3
η

(
GM

G

)2[1

2
+ (1+ η) tan2

(
θe

2

)]
;

C

,
by

(12)T20 = √
2
x(x + 2)+ y/2

1+ 2(x2 + y)
,

and so a measurement ofT20, together with mea
surements ofA and B allows an extraction ofGC

and GQ, and hence a complete test of our the
retical understanding of deuteron structure. Exp
ments over the last dozen years at Bates [8,9], Nov
birsk [10,11], NIKHEF [12–14], and Jefferson La
oratory [15] have measuredT20 in electron–deutero
scattering, and so facilitated experimental determ
tions of the full set of deuteron structure functio
over a kinematic range betweenQ = 0 and Q =
1.5 GeV [16,17]. Modern nucleon–nucleon potentia
when combined with models for two-body contrib
tions to the deuteron current, do a good job of rep
ducing this data (see, e.g., [18–20]). An accurate
resentation of the isoscalar electromagnetic form
tor of the nucleon plays a crucial role in this succe
For a thorough status report on the subject of electr
deuteron scattering we refer to three recent revi
which discuss the subject [17,21,22].

In this Letter we wish to address electron–deute
scattering data in the framework of effective theor
of deuteron dynamics. This approach (for recent
views, see Refs. [23,24]) is based on the use of a ch
expansion for the physics of the two-nucleon syste
Ultimately it shares many features with the more “t
ditional”, and very successful, potential models. Ho
ever, as first suggested by Weinberg [25–27], this “
clear effective theory” is based on a systematic ch
and momentum expansion for the kernels of proce
in theNN system. Thus, for electron–deuteron sc
tering we expand the deuteron currentJµ in operators
which are ordered according to their chiral dimensi
viz.:

(13)Jµ = e

∞∑
i=1

ci
1

Λi−1O
(i)
µ ,

where the operatorO(i)
µ containsi − 1 powers of the

small parametersp (the momentum of the nucleon
inside deuterium),mπ , andQ. The numbersci are,
a priori, assumed to be of order 1, andΛ is the
scale of chiral symmetry breaking:Λ∼ 4πfπ ,mρ,M.
Since the expectation value ofp and the value o
mπ are both much smaller thanΛ it follows that,
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providedQ < Λ, and thecs really are of order one
this expansion should converge well. The expans
parameter(p,Q,mπ)/Λ is denoted here byP .

The operatorsO(i)
µ and the coefficientsci are

constructed according to the well-established cou
ing rules and Lagrangian of chiral perturbation th
ory [29]. Here we present results forGC andGQ up
to ordereP 3, and results forGM up toO(eP 2). We
go beyond the recent calculation of Ref. [28], whi
computed all three form factors only up toO(eP 2).

We also demonstrate that the apparent failure of
EFT description seen in Ref. [28] at momentum tra
fers of order 300 MeV comes not from two-nucle
physics but from the poor convergence of the isosc
nucleon form factor in chiral perturbation theory.
fact, provided that single-nucleon structure effects
correctly included in the calculation, the nuclear effe
tive theory is much more accurate than the result
Ref. [28] might lead one to believe. Indeed, ultimate
it describes all of the extant experimental data onGC

andGQ out to momentum transfers of order 700 Me
This is done as follows. In Section 2 we sket

the derivation of Jµ from the counting rules o
chiral perturbation theory, and give results for t
current at leading order,O(e), next-to-leading orde
O(eP 2), and next-to-next-to-leading order,O(eP 3).
In Section 3 we will discuss the wave functions us
in our calculation, and outline some of the issu
associated with the desire for consistency between
deuteron current and the deuteron wave functions
Section 4 we will present our results forGC , GQ,
andGM , as well as results for the deuteron’s sta
propertiesµd ,Qd , and the deuteron charge radius. W
conclude in Section 5.

2. The deuteron current

The heavy-baryon chiral perturbation theo
(HBχPT) Lagrangian is organized according to t
powers ofP which appear in the classical Lagran
density. The pieces of the leading-order (O(P)) heavy-
baryon Lagrangian relevant to the computation to
presented here are:

(14)L(1)πN =N†(iv ·D)N + gAN
†u · SN,
with

(15)Dµ = ∂µ − ie

2
(1+ τ3)Aµ + · · · ,

(16)uµ = iu†∂µUu
†,

andv chosen to bev = (1,0,0,0), so that:

(17)S = (0,S); S = σ

2
.

We also choose the pion interpolating field such th

(18)u2 =U = exp

(
i �τ · �π
fπ

)
.

Aµ is the photon field. Note that we have omitted so
terms that are of higher-order in the pion field than
need for our calculation.

The part ofL(2)γN relevant for our calculation is th
photon–nucleon piece. There we focus on the verti
suppressed by orderp,Q/M , that govern the couplin
of E1 and M1 photons to the nucleon [29]:

L(2)γN =N† 1

2M

[
(v ·D)2 −D ·D]

N

− ie

4M
N†[Sµ,Sν ]

(19)× [(1+ κv)τ3 + (1+ κs)]FµνN,

with Fµν the electromagnetic field strength tensor.κs
and κv are the isoscalar and isovector parts of
anomalous magnetic moment of the nucleon. Th
are known experimentally, and have the values−0.12
and 3.90, respectively.

There is also an important term whose coeffici
is entirely determined by reparameterization inva
ance [30]. It occurs after the Foldy–Wouthysen tra
formation is used to eliminate the lower-componen
the heavy-baryon field [29]:

(20)L(2)FW = −N† igA

2M
{S ·D,v · u}N.

Employing the definitions above, then reorganiz
the result by eliminating total derivatives and using
nucleon equation of motion, leads to the piece relev
for our study:

(21)L(2)πγN = egA

2Mfπ
N†τaπa

(
(S · ∂)v ·A)

N.

The first occurrence of the finite electric radius
the isoscalar nucleon occurs in chiral perturbation t
ory as a coefficient in the LagrangianL(3)γN . Similarly,
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the magnetic radius of the nucleon appears as a c
ficient in L(4)γN . In both of these Lagrangians one al
encounters terms arising from relativistic correctio
to the single-nucleon four-current. The coefficients
these structures are determined by reparameteriz
invariance, and can be found by taking the relativis
current operator and using the standard procedure
generating the non-relativistic one-body current op
ator as an expansion in powers ofp/M andQ/M (see,
for instance, [5,31]).

Finally, in L(4) we encounter a two-nucleon ope
ator representing a magnetic photon coupling to
NN system [28,32]:

(22)L(2)γNNM = −ieL2
(
N†[Sµ,Sν]FµνN

)(
N†N

)
.

This short-distance two-body current will modify th
magnetic moment of deuterium.

Similarly, in L(3)γNN there is an operator which rep
resents a quadrupole (E2) photon coupling to theNN

system [33] and so modifies the deuteron quadrup
moment. At the same order there is also an oper
which modifies the deuteron charge radius [33].

The vertices derived from the Lagrangians (14
(22) are then used to draw all possible Feynman
agrams contributing to the processγ ∗NN → NN .
A particular Feynman diagram then leads to an op
ator appearing in the sum (13). The power ofP that
this operator possesses is defined by considerin
parts of the amputated Feynman diagram represen
it, and multiplying together the “P -scaling factors” of
these separate pieces. These factors are defined a
lows:

• A vertex fromL
(n)
πN contributes a factor ofPn.

• A vertex involving a photon fromL(n)γN , L(n)γπN , or

L
(n)
γNN contributes a factor ofPn−1.1

• Each pion propagator contributes a factor ofP−2.
• Each nucleon propagator contributes a factor
P−1.

• A two-body graph has an additional factor ofP 3.
• Each loop contributes a factor ofP 4.

1 This peculiarity occurs because we pull out a factor ofe when
defining the operatorsOµ. If we countede ∼ P then the counting
for vertices involving photons would be exactly as for pion–nucle
interactions.
l-

Fig. 1. Three momenta of the deuteron, photon, and nucleons i
Breit frame for a generic one-body contribution toJµ. This frame
is chosen because in it the photon is purely space-like:q = (0,q).
Time runs from right to left.

We now discuss the charge and current opera
in turn. Such a decomposition is, of course, n
Lorentz invariant, so here we make this specificat
in the Breit frame, where the three-momentum of
deuteron and the nucleons is as shown in Fig. 1.

Deuteron charge The vertex fromL(1)πN which repre-
sents anA0 photon coupling to the nucleon gives t
leading-order (LO) contribution toJ0:

(23)J
(0)
0 = |e|.

This is depicted in Fig. 2(a).
The most important correction toJ0 arises from

the insertions inL(3)πN which generate the nucleon
isoscalar charge radius. This gives a result forJ0
throughO(eP 2):

(24)J
(2)
0 structure= |e|

(
1− 1

6

〈
r2
Es

〉
Q2

)
,

where 〈r2
Es 〉 is the isoscalar charge radius of t

nucleon, for which we adopt the value:

(25)
〈
r2
Es

〉 = (0.777 fm)2.

(Note:Q2 = q2 holds in the Breit frame.)
Also present at this order are relativistic correctio

to the single-nucleon charge operator. To gene
the “intrinsic” current operator which can be insert
between deuteron wave functions calculated in
two-nucleon center-of-mass frame we employ
formalism of Adam and Arenhövel, as described
Ref. [31]. The relativistic corrections then fall in
two categories: corrections coming from the expans
of the relativistic single-nucleon current in powers
p/M, and corrections due to the necessity of boos



16 D.R. Phillips / Physics Letters B 567 (2003) 12–22

is
Fig. 2. Diagrams representing the leading contribution to the deuteron charge operator (a), the leading two-body contribution toJ0 (b), and the

dominant short-distance piece (c). Solid circles are vertices fromL(1)πN , and the shaded circle is the vertex fromL(2)γπN . The hatched square

a four-nucleon vertex fromL(3)
γNN
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the deuteron wave function from the frame whe
P = 0 to the frame whereP = ±q/2.

When the calculation is organized in this way t
dominant “relativistic effect” for momentum transfe
of order 500 MeV is a shift in the length ofq.
This “length contraction” accounts for a portion
the boost of the deuteron wave function (for deta
see Refs. [20,31]). The net result is that whereas
leading-order form factorGC can be represented as

(26)G
(0)
C = |e|

∫
d3p

(2π)3
ψ∗

(
p + q

2

)
ψ(p),

with ψ the deuteron wave function, atO(eP 2) the
expression is:

(27)

G
(2)
C boost= |e|

∫
d3p

(2π)3
ψ∗

(
p + q

2
√

1+ η

)
ψ(p),

whereη = Q2/(4M2
d ) was defined above. Here w

have not reproduced the terms which scale asp/M,
and we have not included the terms from Eq. (24). T
sole effect written is the one arising from the bo
of the deuteron wave function, although all effe
occurring atO(eP 2) are included in our computation

This completes the discussion of mechanisms c
tributing at O(eP 2), or next-to-leading order. A
O(eP 3)—next-to-next-to-leading order—the Lagra
gian (14) generates a tree-level two-body graph w
an isoscalar structure, as shown in Fig. 2(b). T
two-body contribution toJ 0 was derived by Riska in
Ref. [34], using an argument based on matching to
ativistic Born graphs for pion electroproduction. He
it occurs in HBχPT as a natural consequence of
Foldy–Wouthysen transformation which generates
relevant term inL(2). Importantly, the nuclear effectiv
theory also has the ability to organize the contribut
of two-body contributions, such as this, relative to
contribution of one-body mechanisms.

Straightforward application of the Feynman ru
for the relevant pieces of the HBχPT Lagrangian gives
the result for this piece of the deuteron current:

〈p′|J (3)0 (q)|p〉

(28)

= τa1 τ
a
2

|e|g2
A

8f 2
πM

[
σ1 · qσ2 · (p − p′ + q/2)
m2
π + (p − p′ + q/2)2

+ (1 ↔ 2)

]
,

wherep andp′ are the (Breit-frame) relative momen
of the two nucleons in the initial and final-stat
respectively.2

The short-distance two-body currents that c
tribute to〈r2

d 〉 andQd are depicted in Fig. 2(c). The
do not give a contribution untilO(eP 5). This suggests
that the charge operator is not particularly sensitive
short-distance physics, since two-body effects of ra
1/Λ are suppressed by five powers ofP relative to the
LO result.

Deuteron three-current The counting for the isosca
lar three-vector currentJ was already considered
detail by Park and collaborators [35].J begins at

2 In terms of the notation of Ref. [42] the result (28) correspo
to µ̃ = −1. This occurs because the field-theoretic manipulati
used to arrive at Eq. (28) assume that the fields represent phy
particles, i.e., they are on-shell. This choice has been the stan
one for computingχPT kernels for interactions with light nucle
see, e.g., [52,53].
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two
Fig. 3. An O(eP 3) loop diagram which ultimately does not generateq2-dependence in the nucleon isoscalar form factor (a), and

contributions of orderO(eP 4) ((b) and (c)). The hatched circle is a vertex fromL(3)πγN , while the shaded square is the vertex fromL(2)γNNM.
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O(eP). There the operator derived fromL(2)γN is:

(29)J(1) = |e|(p + q/2)/M + iµSσ × q,

wherep−q/4 is the momentum of the struck nucleo
as shown in Fig. 1, andµS is the isoscalar magnet
moment of the nucleon, whose value we take to
µS = 0.88|e|/(2M).

As in the case ofJ0, there are finite-size and re
ativistic corrections to Eq. (29) which are suppres
by two powers ofP 2. Thus, in this case they enter
O(eP 3), and represent the NLO corrections toGM .
Loop graphs of the type depicted in Fig. 3(a) also
ter at this order. However, it can be shown that the o
effect of these loops on the isoscalarNN current is
to renormalize the magnetic moment of the nucle
their isoscalar part does not have anyq2 dependence
(an analogous argument is given for real photon
Ref. [35]).

At O(eP 4) [NNLO] two kinds of magnetic two-
body current enter the calculation. Park et al. h
pointed out that when magnetic photons interact w
deuterium there is a single-nucleonγπ contact term
in L(3)πγN [35]. The coefficient of this portion of th
chiral Lagrangian was fixed in Ref. [35] using th
KSRF relation and a resonance-saturation hypoth
Alternatively, this coefficient could also be fixed b
comparison to data—at least in principle. In either c
this γπNN vertex generates a pion-range two-bo
current with a coefficient that is undetermined a prio
as shown in Fig. 3(b).

Meanwhile, a number of authors [28,32,33,35,3
have pointed out that the short-distance two-body
erator from the Lagrangian in Eq. (22) contributes
J at O(eP 4). It generates a “short-range” exchang
current contribution toGM (see Fig. 3(c)). Since thi
is only suppressed byP 3 relative to the leading con
tributions toGM we would expectGM to be markedly
more sensitive to details of the short-distance phy
thanGC . Given the presence of two undetermined
rameters at NNLO inJ we will only examine the lead
ing and next-to-leading order predictions of the n
clear effective theory forGM .

3. Deuteron wave functions

In order to define the computation completely
remains only to specify the deuteron wave functio
which will be used for the evaluation of the matr
elements in Eqs. (2)–(4). Here we will use fo
different kinds of wave function:

1. A “strict” chiral perturbation theory wave func
tion, as derived in Ref. [37]. We generally empl
the NLO wave function, with the cutoff chosen
beΛ = 600 MeV. We also use Epelbaum et a
NLO wave function withΛ= 540 MeV for com-
parison.

2. The N2LO wave function of Ref. [38]. In this
calculation a specific choice of cutoff is mad
which allows for better accuracy in fittingNN
phase shifts. Certain relativistic corrections to
NN potential are also included.

3. The wave functions derived in Ref. [39] by “in
tegrating in” the one-pion exchange potent
(OPEP) to a given radiusR. These should be re
garded as very simplistic potential models for de
terium. They are, however, designed to prod
the correct values for the important deuteron pr
ertiesAS , AD, andB, as well as to include th
standard non-relativistic OPEP (with the “mo
ern” coupling constant).
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4. The deuteron wave function obtained using
Nijm93 meson-theoretic potential [40].

There is an important question of consistency w
the current for all of these wave functions. In p
ticular, it is well known that the charge contributio
(28) is associated with so-called “relativistic corre
tions” to the one-pion-exchange potential. IfJ (3)0 and
the terms in OPEP suppressed byp2/M2 relative to
the leading behaviour are derived within a consist
framework then the results for deuteron form fact
should be unitarily equivalent [41–43]. In fact, the a
thors of Ref. [37] did not consider “relativistic corre
tions” to one-pion exchange. They countedM ∼ Λ2

χ

and so regarded the pieces of OPEP of relative o
p2/M2 as being down byP 4 compared with the lead
ing piece of the chiralNN potential. Indeed, none o
the wave functions listed under numbers one, th
and four above include any “relativistic correction
to one-pion exchange. Clearly a fully-consistent tre
ment of the deuteron current andNN potential inχPT
which incorporates what has been learned about
tary equivalence [41–43] is necessary if a definitive
sult is to be established for electron–deuteron sca
ing in the nuclear effective theory.

Here our goal is less ambitious. We take wave fu
tions presently on the market and use the expan
for the deuteron current discussed in Section 2 to g
erate results forGC ,GQ, andGM . The error resulting
from inconsistencies in this procedure can be asse
by comparing the results obtained with the wave fu
tions of Refs. [37,39,40] to those found using the “Id
ho” wave function of Ref. [38]. Of the wave function
used here, only the “Idaho” wave function includes
effect of relativistic corrections to one-pion exchan
of the type associated by unitary equivalence with
two-body charge contribution (28).

4. Results

Strict chiral expansion The results of the leading
order (LO), next-to-leading order (NLO), and nex
to-next-to-leading order calculations forGC , using
the NLO χPT wave function of Ref. [37] withΛ =
600 MeV, are displayed in Fig. 4. Also shown there
data from the compilation [16]. TheχPT expansion for
J0 appears to be converging forq � 600 MeV, but it
Fig. 4. GC as calculated in the strictχPT expansion forJ0 at
leading, next-to-leading, and next-to-next-to-leading order, plo
against|q|. The experimental data is taken from the extraction
Ref. [16]: upward triangles represent data from theT20 measure-
ment of Ref. [10], open circle [13], solid circle [8], open squa
[14], downward triangles [11], star [12], solid squares [9], solid
amonds [15].

is not converging to the data. As was already obser
in the NLO calculations of Walzl and Meißner [28
a strict chiral expansion ofJ 0 does a poor job o
describing data onGC for Q2 > 0.1 GeV2.

The reason for this failure can be traced to
isoscalar nucleon form factor obtained inχPT [44].
That form factor is:

(30)GN
E

(
Q2) = 1− 1

6

〈
r2
N

〉
Q2,

and it describes electron–nucleon scattering data
up toQ2 ∼ 0.1 GeV2. The inclusion of heavy meson
in the chiral Lagrangian remedies this situation som
what [45], but if we insist on a strictχPT expansion—
or even include explicit Delta degrees of freedom
the theory [46]—our description of electron–deute
data will be limited byχPT’s difficulty in describing
single-nucleon isoscalar electromagnetic structure

Factorization A solution to this problem is provide
by the factorization ofJ0. Up to the order to which we
work the deuteron charge operator can be written
the product of a piece that describes the current du
structureless nucleons and a nucleon-structure pie
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〈p′|J0|p〉 = (|e|δ(3)(p′ −p− q/2)

(31)

+ 〈p′|J (3)0 (q)|p〉)GN
E

(
Q2) +O

(
eP 4).

(Relativistic corrections are not written here, but,
this order, factorization is also valid for them.)

Here we focus on the ability of nuclear effecti
theory to describe deuteron structure, and so
choose to apply the chiral expansion to the ratios
form factors:

(32)
GC

GN
E

and
GQ

GN
E

.

To do this we compute the ratioJ0/G
N
E , i.e., the

electric response of a deuterium nucleus contain
structureless nucleons. Then, in order to compare
the compilation [16], the ratios (32) are multiplied b
the parameterization ofGN

E found in Ref. [47]. The
results obtained by this procedure are shown in Fig
This time the expansion not only converges, provid
thatQ � 700 MeV, but also reproduces data on bo
GC andGQ in this range ofQ.

Expanding the quantities (32) in the effective th
ory sidestepsχPT’s problems in describing isoscal
nucleon structure. We find that the chiral expans
for these ratios is in good agreement with data. Si
these are the type of quantities which must be ca
lated in order to extract nucleon-structure informat
from deuteron data the results shown in Fig. 5 are q
encouraging in this regard.

Turning to the magnetic form factor, factorizatio
also holds there, to the order to which we work, and
we compute the chiral expansion for the ratioJ+/GN

M .
Since we only calculateJ+ to NLO it is difficult to
judge the convergence of the series, but the descrip
of the data is quite good over the rangeQ� 500 MeV.

Estimating the size of short-distance effects In order
to judge the sensitivity of this observable to sho
distance effects, in Fig. 6 we also show the res
for GM obtained with a simple short-distance+
OPEP wave function [39]. This wave function a
the χPT NLO wave function differ only at distance
r � 1/mπ , and so the red-dashed line’s agreem
with data toQ ∼ 900 MeV should be regarded a
fortuitous. From an EFT point of view, the differen
between the red-dashed and solid curves in Fig.
Fig. 5. GC and GQ (in units of fm2) calculated with nucleon
structure effects included via factorization (at NLO and NNLO, L
is as before). The NLOχPT deuteron wave function withΛ= 600
MeV was used. Legend as in Fig. 4.

Fig. 6. The deuteron magnetic form factor as calculated to LO w
theχPT NLO wave function (short-dashed line) and NLO with t
χPT NLO wave function (solid line) and theR = 1.5 fm + OPEP
wave function (long-dashed line). Factorization is used to incl
nucleon structure in the NLO results. Experimental data fr
deuteron magnetic moment, open triangle [7]; the parameteriza
of Ref. [17], open squares; and measurements ofB(Q2): solid
circles [48], open diamonds [49], and stars [50].

a short-distance effect. Such effects enter at NNLO
this observable, and so the sizable impact of physic
distancesr ∼ 1/Λ onGM that is seen in Fig. 6 is no
surprising.

In contrast, short-distance contributions toGC and
GQ do not occur untilO(eP 5). As withGM , we can
estimate their impact by computing the form facto
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m
Fig. 7. Results with different wave functions forGC andGQ (in units of fm2). Solid black and gray lines are with wave functions fro
Ref. [37], dot-dashed with that of [38], dotted [40], and dark and light gray long-dashed [39].
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with different deuteron wave functions—see Fig.
The results forGC andGQ are largely the same fo
Q � 600 GeV. The most noticeable difference occ
around the zero ofGC—a region where sensitivity t
details of deuteron physics is well-established.

Intriguingly, the band representing different a
sumptions about short-distance physics is quite
row out to values ofQ � 800 MeV whenGQ is
considered. This suggests that the shape ofGQ is
not strongly affected by short-distance physics, a
higher-order corrections to it may well be sma
(A similar conclusion was reached without the use
nuclear effective theory in Ref. [51].)

The curves of Figs. 5–7 are not, strictly speaki
predictions ofχPT for GC andGQ. In terms of the
chiral expansion for these form factors a particu
class of higher-order terms for electron–nucleon s
tering have been resummed: the class of terms res
sible for reproducing the “experimental”GN

E . Never-
theless, the results of the procedure we have ado
show that nuclear effective theory does a good
of describingdeuteron structure—and especially th
deuteron charge distribution—out to surprisingly hi
momentum transfers.
-

Table 1
Deuteron static properties computed with the NLOχPT wave
function (Λ = 600 MeV) at LO, NLO, and NNLO. At NNLO
µd can be exactly reproduced by adjusting the coefficientL2 in
Eq. (22). (The numerical error in each quantity is±1 in the last
significant figure quoted.)

Jµ order rd (fm) µd (n.m.) Qd (fm2)

LO 1.975 0.8591 0.2660
NLO 1.984 0.8531 0.2641

NNLO 1.987 Experiment 0.2764

Deuteron static properties As far as deuteron stati
properties are concerned it is irrelevant how nucle
structure is included in the calculation. We ha
computed:

(33)
〈
r2
d

〉 ≡ −6
dGC

dQ2

∣∣∣∣
Q2=0

,

when GC is calculated with structureless nucleo
The result for rd ≡ 〈r2

d 〉1/2 is shown in Table 1
together with results forµd andQd . Once again, the
convergence of the expansion is very good, with
leading-order result capturing most of the physics
these static properties.
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Table 2
Deuteron static properties at NNLO (rd andQd ) and NLO (µd ) for a range of deuteron wave functions. At NNLOµd can be reproduced
exactly

Experiment Nijm 93 χPT NLO NNLO Idaho OPEP+ short
Λ= 600 MeV R = 1.5 fm

AS (fm−1/2) 0.8846(8) 0.8842 0.869 0.885 0.8845
AD/AS 0.0256(4) 0.0252 0.0248 0.0245 0.0253
B (MeV) 2.224575(9) Fit 2.161 Fit 2.2246
rd (fm) 1.971(5) 1.979 1.987 1.984 1.975
µd (n.m.) 0.857406(1) 0.848 0.853 0.847 0.847
Qd (fm2) 0.2859(3) 0.280 0.276 0.291 0.280
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In order to assess the sensitivity of these quant
to short-distance effects we have computedrd , µd ,
andQd with a variety of deuteron wave function
The results are summarized in Table 2 and agreem
with experimental data is very good. The∼ 0.5%
discrepancy inrd is certainly consistent with th
expected size of theP 4 corrections omitted here, whil
the ∼ 1% discrepancy inµd is perhaps less than on
would naively expect, given the that effects of relat
orderP 3 were not included in this computation of th
deuteron’s magnetic moment.

On the other hand, it is apparent thatQd is much
more sensitive to short-distance physics than eitherd
or µd . Its value varies by about 5% between mod
with the same pion-range, but different short-distan
physics. The counterterm that would absorb this s
sitivity is nominally ofO(eP 5), which we estimate to
be almost ten times smaller than is necessary to
sorb the variation seen in Table 2. Whether this co
terterm should be promoted to a lower order—as
been argued in Refs. [33,39]—cannot be properly
termined until higher-order calculations ofQd are per-
formed and a systematic study of its renormalizati
group evolution is made.

5. Conclusion

Chiral perturbation theory, applied to the deute
four-current in the fashion suggested by Weinberg [
27], produces an expansion in increasing powers
small momenta (P ) for the deuteron form factorsGC ,
GQ, andGM . However, this expansion fails to re
produce the experimental data at momentum trans
Q ∼ 300 MeV [28]. The failure, however, lies not i
χPT’s description ofdeuteron structure, but with its
t

difficulties in describingisoscalar nucleon structure.
Applying a chiral expansion to the ratio of deuter
and nucleon form factors yields NNLO results forGC

andGQ that agree with data toQ ∼ 700 MeV.GC

andGQ are also relatively insensitive to short-distan
physics over this range.

The magnetic form factor,GM , was computed up
to NLO, and turns out to be more sensitive to sho
distance physics. This result is anticipated with
the effective theory, since short-distance two-bo
currents are suppressed by three powers ofP relative
to leading inGM , but are down by two additiona
powers ofP in GC andGQ.

Deuteron static properties are also well reproduc
althoughQd shows significant variability when differ
ent assumptions about deuteron short-distance ph
are made. This may be associated with the “Qd -
puzzle”: the inability of modern potential mode
to reproduce the experimental value for this qu
tity [5]. Any possible resolution of this puzzle withi
the nuclear effective theory will require the compu
tion of higher-order effects inJ0, including two-pion-
exchange contributions to the deuteron four-curren
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